Skip to main content
× Página Inicial Servicios Productos Catálogos Descargas Asistencia Técnica Acerca de Contacto Carreras (505) 872-0037

(505) 872-0037

Shopping Cart Icon
Carrito
 
Login Icon
Iniciar sesión
Language Selector
es-cl
×
Americas
Europe
Middle East & Africa
Asia Pacific & Japan
Ideal Vacuum XG-110 Portable Digital Thermocouple Controllers On Sale Ideal Vacuum XGC-320 Portable Digital Thermocouple Controllers On Sale Ideal Vacuum XG-120 Digital Thermocouple Gauges On Sale Agilent IDP-7 Dry Scroll Vacuum Pumps On Sale Agilent IDP-10 Dry Scroll Vacuum Pumps On Sale Edwards nXR Multi Stage Roots Pumps On Sale

Palabra Clave       Número de Parte:      

× Bombas de vacío Cámaras de vacío modulares Cámaras de vacío de acero inoxidable Cámaras de aluminio soldadas ideales ExploraVAC Cámaras Ilimitadas ExploraVAC Cámaras de Vacío Accesorios y bridas Pasamuros Válvulas de vacío Kits de reconstrucción, piezas y motores Líquidos, aceites y grasas para vacío Turbobombas y controladores Filtros Trampas y Silenciadores Hornos de convección y vacío Detección de fugas y RGA Medición de presión de vacío Refrigeradores de recirculación y baños de agua
×

Load

Pfeiffer Adixen ASM 340 Helio Detector de fugas Fan Grill Reemplazo NUEVO
Agotado


Pfeiffer Adixen ASM 340 Detector de fugas de helio Reemplazo de la parrilla del ventilador Solo reemplazo de la parrilla del ventilador, el detector de fugas se vende por separado Este es un reemplazo de la parrilla del ventilador para un detector de fugas de helio Pfeiffer Adixen ASM340. Hacemos mantenimiento en estos detectores de fugas aquí mismo en Ideal Vacuum. Si necesita mantenimiento o asistencia de mantenimiento, llame al 505-872-0037. Para aplicaciones de mantenimiento y entornos de producción pequeños. El modelo de sobremesa del detector de fugas de helio ASM 340 ofrece detección de fugas en modo vacío (sonda de pulverización) o olfateo (con sondas opcionales). Estos detectores de fugas de helio confiables se pueden usar para encontrar fugas muy precisas en sus sistemas de vacío. El ASM 340 se caracteriza por su potente sistema, su fácil manejo, su tiempo de respuesta ultrarrápido y su breve tiempo de recuperación. Este ASM 340 es un paquete completo y tiene una bomba de vacío preliminar de respaldo de diafragma seco interno de velocidad de bombeo de 2 CFM, y tiene un voltaje universal de 90-240 VCA. La tasa de fuga mínima detectable disponible para esta unidad en modo de vacío es 1x10-12 mbar l/s y en modo sniffer 1x10-9 mbar l/s. El ASM 340 se puede adaptar a aplicaciones específicas con la ayuda de nuestra extensa línea de accesorios para esta unidad multipropósito. El manual de instrucciones de funcionamiento en seco Pfeiffer Adixen ASM-340 y el folleto del producto se pueden descargar en formato PDF a continuación. Fundamentos de la prueba de fugas con helioLa espectrometría de masas con helio, o prueba de fugas con helio, es un medio muy preciso de detección de fugas. Esta tecnología se desarrolló por primera vez para el Proyecto Manhattan durante la Segunda Guerra Mundial para localizar fugas extremadamente pequeñas en el proceso de difusión de gas. En el corazón de las pruebas de fugas de helio se encuentra un equipo complejo llamado espectrómetro de masas de helio. Sencillamente, esta máquina se utiliza para analizar muestras de aire (que se introducen en la máquina a través de bombas de vacío) y proporciona una medida cuantitativa de la cantidad de helio presente en la muestra. En la práctica, una fuga se identifica por un aumento en el nivel de helio analizado por la máquina. Las pruebas de fugas de helio pueden identificar fugas extremadamente pequeñas. Por ejemplo, nuestro equipo puede detectar una fuga tan pequeña que emitiría solo dos centímetros cúbicos de helio (o la cantidad equivalente a dos terrones de azúcar) en 320 años. Si bien muy pocas aplicaciones requieren este nivel de precisión, este ejemplo sirve para resaltar la precisión posible con este proceso. Si bien la detección de fugas de helio puede parecer un procedimiento simple, el proceso implica una combinación de arte y ciencia. El usuario debe asegurarse de que el equipo funcione correctamente y el proceso depende en gran medida de la experiencia del usuario. Considere esta analogía: si bien cualquier persona con suficiente dinero puede comprar un avión, aprender a volar requiere mucha práctica. Lo mismo ocurre con la detección de fugas de helio: asegúrese de que su piloto sepa volar. ¿Por qué es superior el helio? Si bien se utilizan muchos gases en la detección de fugas, las cualidades del helio brindan pruebas superiores. Con una AMU (Unidad de masa atómica) de solo 4, el helio es el gas inerte más liviano. Solo el hidrógeno, con una AMU de 2, es más ligero que el helio. Sin embargo, debido al potencial explosivo del hidrógeno, rara vez se usa. Razones adicionales por las que el helio es un gas trazador superior: Presente solo moderadamente en la atmósfera (aproximadamente 5 partes por millón) Fluye a través de grietas 2.7 veces más rápido que el aire No tóxico No destructivo No explosivo Económico Fácil de usar debido Debido a estos atributos y su alta sensibilidad, la prueba de fugas con helio ha ganado una amplia aceptación en una amplia gama de aplicaciones de prueba de fugas. Los dos modos de prueba principales de Helium Leak Testing, si bien hay una variedad de procedimientos de prueba, en general hay: Dos métodos principales de prueba de fugas de helio: Sonda de pulverización Sonda rastreadora La elección entre estos dos modos se basa en el tamaño del sistema que se está probando , así como el nivel de sensibilidad requerido. Sonda de rociado: proporciona la máxima sensibilidad Para esta técnica, el detector de fugas se conecta directamente al sistema bajo prueba y se evacua el interior del sistema. Una vez que se logra un vacío aceptable, se rocía helio discretamente en el exterior del sistema, prestando especial atención a cualquier ubicación sospechosa. Cualquier fuga en el sistema, incluidas soldaduras defectuosas (causadas por grietas, perforaciones, soldaduras incompletas, porosidad, etc.), juntas defectuosas o faltantes, fugas debidas a abrazaderas flojas o cualquier otro defecto permitirán que el helio pase y se detecte fácilmente. por la máquina La fuente de cualquier fuga se puede identificar y reparar con precisión. El proceso de sonda de rociado se utiliza para lograr el más alto nivel de sensibilidad. El equipo que se utiliza dicta la sensibilidad máxima alcanzable; en el caso de Jurva Leak Testing es 2x10-10 std cc/seg. Esta técnica requiere que el sistema que se está probando sea relativamente hermético antes de la prueba, ya que se requiere un amplio vacío para la prueba. Sin embargo, mediante el uso de dispositivos especiales de estrangulamiento, normalmente se puede realizar una prueba general. La prueba general debe eliminar cualquier fuga importante, lo que permite el uso de una mayor sensibilidad. Los siguientes son ejemplos de sistemas que probamos usando la técnica de sonda de rociado: Hornos de barra A Sistemas de haz de electrones Sistemas láser Equipos de deposición de metal Sistemas de destilación Sistemas de vacío Sonda de rastreo esta técnica, el helio se purga por todo el interior del sistema que se está probando. Debido a las propiedades innatas del helio, migra fácilmente por todo el sistema y, en su intento de escapar, penetra cualquier imperfección, incluidas: soldaduras defectuosas (causadas por grietas, orificios, soldaduras incompletas, porosidad, etc.), juntas defectuosas o faltantes, fugas debido a abrazaderas flojas o cualquier otro defecto. Luego se escanea el exterior del sistema usando una sonda conectada al probador de fugas. Cualquier fuga resultará en un aumento del nivel de helio más cercano a la fuente y se detectará fácilmente. Luego se pueden identificar las fuentes de fuga, lo que brinda la oportunidad de reparar y volver a probar de inmediato. A diferencia de la técnica de sonda de rociado, este proceso es muy flexible y se puede adaptar para satisfacer las necesidades de prácticamente cualquier sistema en el que se pueda inyectar helio. No hay limitación práctica de tamaño. Sin embargo, la técnica de la sonda de rastreo no es tan sensible como el proceso de la sonda de rociado debido a la cantidad de helio presente en el aire (aproximadamente 5 ppm). La máxima sensibilidad alcanzable con este procedimiento es de aproximadamente 1x10-6 std cc/seg. Sin embargo, este proceso es muy superior a otros métodos tradicionales de prueba de fugas, como: prueba de burbujas, emisión acústica, líquido penetrante o prueba de caja de vacío. La siguiente lista es un ejemplo de sistemas que Jurva Leak Testing ha probado usando el proceso de sonda de rastreo: Tanques de almacenamiento (tanto sobre el suelo como bajo tierra) Techos flotantes Tuberías subterráneas Cables subterráneos Sistemas asépticos (refrigeradores instantáneos, intercambiadores de calor, rellenos, etc.) Cualquier recipiente/línea o sistema que se pueda presurizar

Condición: Nuevo



Número de parte: P108343



Precio: $30,615.94CLP



Divisa: Chilean Peso (CLP)

Pfeiffer Adixen ASM 340 3G Detector de fugas de helio Analizador Celda Reemplazo del sello NUEVO
Disponible
1


Pfeiffer Adixen ASM 340 Detector de fugas de helio Analizador 3G Sello de sello de celda solamente (x1), el detector de fugas se vende por separado Este es un sello de analizador NBR 3G para un detector de fugas de helio Pfeiffer Adixen ASM340. Hacemos mantenimiento en estos detectores de fugas aquí mismo en Ideal Vacuum. Si necesita mantenimiento o asistencia de mantenimiento, llame al 505-872-0037. Para aplicaciones de mantenimiento y pequeños entornos de producción. El modelo de sobremesa del detector de fugas de helio ASM 340 ofrece detección de fugas en modo vacío (sonda de pulverización) o olfateo (con sondas opcionales). Estos detectores de fugas de helio confiables se pueden usar para encontrar fugas muy precisas en sus sistemas de vacío. El ASM 340 se caracteriza por su potente sistema, su fácil manejo, su tiempo de respuesta ultrarrápido y su breve tiempo de recuperación. Este ASM 340 es un paquete completo y tiene una bomba de vacío preliminar de respaldo de diafragma seco interno de velocidad de bombeo de 2 CFM, y tiene un voltaje universal de 90-240 VCA. La tasa de fuga mínima detectable disponible para esta unidad en modo de vacío es 1x10-12 mbar l/s y en modo sniffer 1x10-9 mbar l/s. El ASM 340 se puede adaptar a aplicaciones específicas con la ayuda de nuestra extensa línea de accesorios para esta unidad multipropósito. El manual de instrucciones de funcionamiento en seco Pfeiffer Adixen ASM-340 y el folleto del producto se pueden descargar en formato PDF a continuación. Fundamentos de la prueba de fugas con helio La espectrometría de masas con helio, o prueba de fugas con helio, es un medio muy preciso de detección de fugas. Esta tecnología se desarrolló por primera vez para el Proyecto Manhattan durante la Segunda Guerra Mundial para localizar fugas extremadamente pequeñas en el proceso de difusión de gas. En el corazón de las pruebas de fugas de helio se encuentra un equipo complejo llamado espectrómetro de masas de helio. Sencillamente, esta máquina se utiliza para analizar muestras de aire (que se introducen en la máquina a través de bombas de vacío) y proporciona una medida cuantitativa de la cantidad de helio presente en la muestra. En la práctica, una fuga se identifica por un aumento en el nivel de helio que analiza la máquina. Las pruebas de fugas con helio pueden identificar fugas extremadamente pequeñas. Por ejemplo, nuestro equipo puede detectar una fuga tan pequeña que emitiría solo dos centímetros cúbicos de helio (o la cantidad equivalente a dos terrones de azúcar) en 320 años. Si bien muy pocas aplicaciones requieren este nivel de precisión, este ejemplo sirve para resaltar la precisión posible con este proceso. Si bien la detección de fugas de helio puede parecer un procedimiento simple, el proceso implica una combinación de arte y ciencia. El usuario debe asegurarse de que el equipo funcione correctamente y el proceso depende en gran medida de la experiencia del usuario. Considere esta analogía: si bien cualquier persona con suficiente dinero puede comprar un avión, aprender a volar requiere mucha práctica. Lo mismo ocurre con la detección de fugas de helio: asegúrese de que su piloto sepa volar. ¿Por qué el helio es superior? Si bien se utilizan muchos gases en la detección de fugas, las cualidades del helio brindan pruebas superiores. Con una AMU (Unidad de masa atómica) de solo 4, el helio es el gas inerte más liviano. Solo el hidrógeno, con una AMU de 2, es más ligero que el helio. Sin embargo, debido al potencial explosivo del hidrógeno, rara vez se usa. Razones adicionales por las que el helio es un gas trazador superior: Presente solo modestamente en la atmósfera (aproximadamente 5 partes por millón) Fluye a través de grietas 2,7 veces más rápido que el aire No tóxico No destructivo No explosivo Económico Fácil de usar Debido a estos atributos y su alta sensibilidad, las pruebas de fugas de helio ha ganado una amplia aceptación en una amplia gama de aplicaciones de prueba de fugas. Los dos modos principales de prueba de fugas de helio, si bien hay una variedad de procedimientos de prueba, en general existen: Dos métodos principales de prueba de fugas de helio: Sonda de rociado Sonda rastreadora La elección entre estos dos modos se basa en el tamaño del sistema que se está probando , así como, el nivel de sensibilidad requerido. Sonda de rociado: brinda la máxima sensibilidad Para esta técnica, el detector de fugas se conecta directamente al sistema bajo prueba y se evacua el interior del sistema. Una vez que se logra un vacío aceptable, se rocía helio discretamente en el exterior del sistema, prestando especial atención a cualquier ubicación sospechosa. Cualquier fuga en el sistema, incluidas soldaduras defectuosas (causadas por grietas, perforaciones, soldaduras incompletas, porosidad, etc.), juntas defectuosas o faltantes, fugas debidas a abrazaderas flojas o cualquier otro defecto permitirán que el helio pase y se detecte fácilmente. por la máquina La fuente de cualquier fuga se puede identificar y reparar con precisión. El proceso de sonda de pulverización se utiliza para lograr el más alto nivel de sensibilidad. El equipo que se utiliza dicta la sensibilidad máxima alcanzable; en el caso de Jurva Leak Testing es 2x10-10 std cc/seg. Esta técnica requiere que el sistema que se está probando sea relativamente hermético antes de la prueba, ya que se requiere un amplio vacío para la prueba. Sin embargo, mediante el uso de dispositivos de estrangulamiento especiales, normalmente se puede realizar una prueba general. La prueba macroscópica debe eliminar cualquier fuga importante, lo que permite el uso de una mayor sensibilidad. Los siguientes son ejemplos de sistemas que probamos utilizando la técnica de sonda de rociado: Hornos de barra A Sistemas de haz de electrones Sistemas láser Equipos de deposición de metales Sistemas de destilación Sistemas de vacío Sonda de rastreo Para esta técnica, se purga helio por todo el interior del sistema que se está probando. Debido a las propiedades innatas del helio, migra fácilmente por todo el sistema y, en su intento de escapar, penetra cualquier imperfección, incluidas: soldaduras defectuosas (causadas por grietas, orificios, soldaduras incompletas, porosidad, etc.), juntas defectuosas o faltantes, fugas debido a abrazaderas flojas o cualquier otro defecto. Luego se escanea el exterior del sistema usando una sonda conectada al probador de fugas. Cualquier fuga resultará en un aumento del nivel de helio más cercano a la fuente y se detectará fácilmente. Luego se pueden identificar las fuentes de fuga, lo que brinda la oportunidad de reparar y volver a probar de inmediato. A diferencia de la técnica de la sonda de pulverización, este proceso es muy flexible y se puede adaptar para satisfacer las necesidades de prácticamente cualquier sistema en el que se pueda inyectar helio. No hay limitación práctica de tamaño. Sin embargo, la técnica de la sonda de rastreo no es tan sensible como el proceso de la sonda de rociado debido a la cantidad de helio presente en el aire (aproximadamente 5 ppm). La máxima sensibilidad alcanzable con este procedimiento es de aproximadamente 1x10-6 std cc/seg. Sin embargo, este proceso es muy superior a otros métodos tradicionales de prueba de fugas, como: prueba de burbujas, emisión acústica, líquido penetrante o prueba de caja de vacío. La siguiente lista es un ejemplo de los sistemas que Jurva Leak Testing ha probado usando el proceso de sonda de rastreo: Tanques de almacenamiento (tanto sobre el suelo como bajo tierra) Techos flotantes Tuberías subterráneas Cables subterráneos Sistemas asépticos (refrigeradores instantáneos, intercambiadores de calor, rellenos, etc.) Cualquiera recipiente/línea o sistema que puede ser presurizado

Condición: Nuevo



Número de parte: P108350



Precio: $23,081.97CLP



Divisa: Chilean Peso (CLP)

Pfeiffer Adixen Inlet metal filter screen KF25 DN25KF 70 micras para ASM-340 Detector de fugas de helio PN 072857
Disponible
1


Filtro metálico de entrada Pfeiffer Adixen KF25 DN25KF de 70 micras para detector de fugas ASM-340 Número de pieza 072857 de Pfeiffer Adixen Este es un filtro de malla de entrada de 70 micras para el detector de fugas de helio ASM-340. Tamaño KF25 DN25KF.

Condición: Nuevo



Número de parte: P108815



Precio: $200,840.55CLP



Divisa: Chilean Peso (CLP)

Pfeiffer Adixen Entrada filtro metálico pantalla KF40 DN40KF 70 micras para ASM-340 Helio Detector de Fugas
Disponible
1


Filtro metálico de entrada Pfeiffer Adixen KF40 DN40KF de 70 micras para detector de fugas ASM-340 Número de pieza 067636 de Pfeiffer AdixenEste es un filtro de entrada de malla de 70 micras para el detector de fugas de helio ASM-340. Tamaño KF40 DN40KF.

Condición: Nuevo



Número de parte: P108816



Precio: $202,212.14CLP



Divisa: Chilean Peso (CLP)

Pfeiffer Adixen ASM 340 Detector de fugas de helio PI1 Reemplazo de filamento de calibre NUEVO
Disponible
1


NUEVO Pfeiffer Adixen ASM 340 Detector de fugas de helio PI1 Filamento de calibre PI1 Solo filamento (aluminio), el detector de fugas se vende por separado Este es un repuesto de filamento de calibre PI1 para un detector de fugas de helio Pfeiffer Adixen ASM340. Hacemos mantenimiento en estos detectores de fugas aquí mismo en Ideal Vacuum. Si necesita mantenimiento o asistencia de mantenimiento, llame al 505-872-0037. Para aplicaciones de mantenimiento y entornos de producción pequeños. El modelo de sobremesa del detector de fugas de helio ASM 340 ofrece detección de fugas en modo vacío (sonda de pulverización) o olfateo (con sondas opcionales). Estos detectores de fugas de helio confiables se pueden usar para encontrar fugas muy precisas en sus sistemas de vacío. El ASM 340 se caracteriza por su potente sistema, su fácil manejo, su tiempo de respuesta ultrarrápido y su breve tiempo de recuperación. Este ASM 340 es un paquete completo y tiene una bomba de vacío preliminar de respaldo de diafragma seco interno de velocidad de bombeo de 2 CFM, y tiene un voltaje universal de 90-240 VCA. La tasa de fuga mínima detectable disponible para esta unidad en modo de vacío es 1x10-12 mbar l/s y en modo sniffer 1x10-9 mbar l/s. El ASM 340 se puede adaptar a aplicaciones específicas con la ayuda de nuestra extensa línea de accesorios para esta unidad multipropósito. El manual de instrucciones de funcionamiento en seco Pfeiffer Adixen ASM-340 y el folleto del producto se pueden descargar en formato PDF a continuación. Fundamentos de la prueba de fugas con helioLa espectrometría de masas con helio, o prueba de fugas con helio, es un medio muy preciso de detección de fugas. Esta tecnología se desarrolló por primera vez para el Proyecto Manhattan durante la Segunda Guerra Mundial para localizar fugas extremadamente pequeñas en el proceso de difusión de gas. En el corazón de las pruebas de fugas de helio se encuentra un equipo complejo llamado espectrómetro de masas de helio. Sencillamente, esta máquina se utiliza para analizar muestras de aire (que se introducen en la máquina a través de bombas de vacío) y proporciona una medida cuantitativa de la cantidad de helio presente en la muestra. En la práctica, una fuga se identifica por un aumento en el nivel de helio analizado por la máquina. Las pruebas de fugas de helio pueden identificar fugas extremadamente pequeñas. Por ejemplo, nuestro equipo puede detectar una fuga tan pequeña que emitiría solo dos centímetros cúbicos de helio (o la cantidad equivalente a dos terrones de azúcar) en 320 años. Si bien muy pocas aplicaciones requieren este nivel de precisión, este ejemplo sirve para resaltar la precisión posible con este proceso. Si bien la detección de fugas de helio puede parecer un procedimiento simple, el proceso implica una combinación de arte y ciencia. El usuario debe asegurarse de que el equipo funcione correctamente y el proceso depende en gran medida de la experiencia del usuario. Considere esta analogía: si bien cualquier persona con suficiente dinero puede comprar un avión, aprender a volar requiere mucha práctica. Lo mismo ocurre con la detección de fugas de helio: asegúrese de que su piloto sepa volar. ¿Por qué es superior el helio? Si bien se utilizan muchos gases en la detección de fugas, las cualidades del helio brindan pruebas superiores. Con una AMU (Unidad de masa atómica) de solo 4, el helio es el gas inerte más liviano. Solo el hidrógeno, con una AMU de 2, es más ligero que el helio. Sin embargo, debido al potencial explosivo del hidrógeno, rara vez se usa. Razones adicionales por las que el helio es un gas trazador superior: Presente solo moderadamente en la atmósfera (aproximadamente 5 partes por millón) Fluye a través de grietas 2.7 veces más rápido que el aire No tóxico No destructivo No explosivo Económico Fácil de usar debido Debido a estos atributos y su alta sensibilidad, la prueba de fugas con helio ha ganado una amplia aceptación en una amplia gama de aplicaciones de prueba de fugas. Los dos modos de prueba principales de Helium Leak Testing, si bien hay una variedad de procedimientos de prueba, en general hay: Dos métodos principales de prueba de fugas de helio: Sonda de pulverización Sonda rastreadora La elección entre estos dos modos se basa en el tamaño del sistema que se está probando , así como el nivel de sensibilidad requerido. Sonda de rociado: proporciona la máxima sensibilidad Para esta técnica, el detector de fugas se conecta directamente al sistema bajo prueba y se evacua el interior del sistema. Una vez que se logra un vacío aceptable, se rocía helio discretamente en el exterior del sistema, prestando especial atención a cualquier ubicación sospechosa. Cualquier fuga en el sistema, incluidas soldaduras defectuosas (causadas por grietas, perforaciones, soldaduras incompletas, porosidad, etc.), juntas defectuosas o faltantes, fugas debidas a abrazaderas flojas o cualquier otro defecto permitirán que el helio pase y se detecte fácilmente. por la máquina La fuente de cualquier fuga se puede identificar y reparar con precisión. El proceso de sonda de rociado se utiliza para lograr el más alto nivel de sensibilidad. El equipo que se utiliza dicta la sensibilidad máxima alcanzable; en el caso de Jurva Leak Testing es 2x10-10 std cc/seg. Esta técnica requiere que el sistema que se está probando sea relativamente hermético antes de la prueba, ya que se requiere un amplio vacío para la prueba. Sin embargo, mediante el uso de dispositivos de estrangulamiento especiales, normalmente se puede realizar una prueba general. La prueba general debe eliminar cualquier fuga importante, lo que permite el uso de una mayor sensibilidad. Los siguientes son ejemplos de sistemas que probamos usando la técnica de sonda de rociado: Hornos de barra A Sistemas de haz de electrones Sistemas láser Equipos de deposición de metal Sistemas de destilación Sistemas de vacío Sniffer ProbeFor esta técnica, el helio se purga por todo el interior del sistema que se está probando. Debido a las propiedades innatas del helio, migra fácilmente por todo el sistema y, en su intento de escapar, penetra cualquier imperfección, incluidas: soldaduras defectuosas (causadas por grietas, agujeros de alfiler, soldaduras incompletas, porosidad, etc.), juntas defectuosas o faltantes, fugas debido a abrazaderas flojas o cualquier otro defecto. Luego se escanea el exterior del sistema usando una sonda conectada al probador de fugas. Cualquier fuga resultará en un aumento del nivel de helio más cercano a la fuente y se detectará fácilmente. Luego se pueden identificar las fuentes de fuga, lo que brinda la oportunidad de reparar y volver a probar de inmediato. A diferencia de la técnica de sonda de rociado, este proceso es muy flexible y se puede adaptar para satisfacer las necesidades de prácticamente cualquier sistema en el que se pueda inyectar helio. No hay limitación práctica de tamaño. Sin embargo, la técnica de la sonda de rastreo no es tan sensible como el proceso de la sonda de rociado debido a la cantidad de helio presente en el aire (aproximadamente 5 ppm). La máxima sensibilidad alcanzable con este procedimiento es de aproximadamente 1x10-6 std cc/seg. No obstante, este proceso es muy superior a otros métodos tradicionales de prueba de fugas, como: prueba de burbujas, emisión acústica, líquido penetrante o prueba de caja de vacío. La siguiente lista es un ejemplo de sistemas que Jurva Leak Testing ha probado usando el proceso de sonda de rastreo: Tanques de almacenamiento (tanto sobre el suelo como bajo tierra) Techos flotantes Tuberías subterráneas Cables subterráneos Sistemas asépticos (refrigeradores instantáneos, intercambiadores de calor, rellenos, etc.) Cualquier recipiente/línea o sistema que se pueda presurizar

Condición: Nuevo



Número de parte: P108348



Precio: $225,568.43CLP



Divisa: Chilean Peso (CLP)

Pfeiffer Adixen ASM 340 Helio Detector de fugas Sistema de filtro de ventilador Reemplazo NUEVO
Agotado


Reemplazo del sistema de filtro del ventilador del detector de fugas de helio Pfeiffer Adixen ASM 340 Solo reemplazo del sistema de filtro del ventilador, el detector de fugas se vende por separado Este es un sistema de filtro de ventilador para un detector de fugas de helio Pfeiffer Adixen ASM340. Hacemos mantenimiento en estos detectores de fugas aquí mismo en Ideal Vacuum. Si necesita mantenimiento o asistencia de mantenimiento, llame al 505-872-0037. Para aplicaciones de mantenimiento y entornos de producción pequeños. El modelo de sobremesa del detector de fugas de helio ASM 340 ofrece detección de fugas en modo vacío (sonda de pulverización) o olfateo (con sondas opcionales). Estos detectores de fugas de helio confiables se pueden usar para encontrar fugas muy precisas en sus sistemas de vacío. El ASM 340 se caracteriza por su potente sistema, su fácil manejo, su tiempo de respuesta ultrarrápido y su breve tiempo de recuperación. Este ASM 340 es un paquete completo y tiene una bomba de vacío preliminar de respaldo de diafragma seco interno de velocidad de bombeo de 2 CFM, y tiene un voltaje universal de 90-240 VCA. La tasa de fuga mínima detectable disponible para esta unidad en modo de vacío es 1x10-12 mbar l/s y en modo sniffer 1x10-9 mbar l/s. El ASM 340 se puede adaptar a aplicaciones específicas con la ayuda de nuestra extensa línea de accesorios para esta unidad multipropósito. El manual de instrucciones de funcionamiento en seco Pfeiffer Adixen ASM-340 y el folleto del producto se pueden descargar en formato PDF a continuación. Fundamentos de la prueba de fugas con helioLa espectrometría de masas con helio, o prueba de fugas con helio, es un medio muy preciso de detección de fugas. Esta tecnología se desarrolló por primera vez para el Proyecto Manhattan durante la Segunda Guerra Mundial para localizar fugas extremadamente pequeñas en el proceso de difusión de gas. En el corazón de las pruebas de fugas de helio se encuentra un equipo complejo llamado espectrómetro de masas de helio. Sencillamente, esta máquina se utiliza para analizar muestras de aire (que se introducen en la máquina a través de bombas de vacío) y proporciona una medida cuantitativa de la cantidad de helio presente en la muestra. En la práctica, una fuga se identifica por un aumento en el nivel de helio analizado por la máquina. Las pruebas de fugas de helio pueden identificar fugas extremadamente pequeñas. Por ejemplo, nuestro equipo puede detectar una fuga tan pequeña que emitiría solo dos centímetros cúbicos de helio (o la cantidad equivalente a dos terrones de azúcar) en 320 años. Si bien muy pocas aplicaciones requieren este nivel de precisión, este ejemplo sirve para resaltar la precisión posible con este proceso. Si bien la detección de fugas de helio puede parecer un procedimiento simple, el proceso implica una combinación de arte y ciencia. El usuario debe asegurarse de que el equipo funcione correctamente y el proceso depende en gran medida de la experiencia del usuario. Considere esta analogía: si bien cualquier persona con suficiente dinero puede comprar un avión, aprender a volar requiere mucha práctica. Lo mismo ocurre con la detección de fugas de helio: asegúrese de que su piloto sepa volar. ¿Por qué es superior el helio? Si bien se utilizan muchos gases en la detección de fugas, las cualidades del helio brindan pruebas superiores. Con una AMU (Unidad de masa atómica) de solo 4, el helio es el gas inerte más liviano. Solo el hidrógeno, con una AMU de 2, es más ligero que el helio. Sin embargo, debido al potencial explosivo del hidrógeno, rara vez se usa. Razones adicionales por las que el helio es un gas trazador superior: Presente solo moderadamente en la atmósfera (aproximadamente 5 partes por millón) Fluye a través de grietas 2.7 veces más rápido que el aire No tóxico No destructivo No explosivo Económico Fácil de usar debido Debido a estos atributos y su alta sensibilidad, la prueba de fugas con helio ha ganado una amplia aceptación en una amplia gama de aplicaciones de prueba de fugas. Los dos modos de prueba principales de Helium Leak Testing, si bien hay una variedad de procedimientos de prueba, en general hay: Dos métodos principales de prueba de fugas de helio: Sonda de pulverización Sonda rastreadora La elección entre estos dos modos se basa en el tamaño del sistema que se está probando , así como el nivel de sensibilidad requerido. Sonda de rociado: proporciona la máxima sensibilidad Para esta técnica, el detector de fugas se conecta directamente al sistema bajo prueba y se evacua el interior del sistema. Una vez que se logra un vacío aceptable, se rocía helio discretamente en el exterior del sistema, prestando especial atención a cualquier ubicación sospechosa. Cualquier fuga en el sistema, incluidas soldaduras defectuosas (causadas por grietas, perforaciones, soldaduras incompletas, porosidad, etc.), juntas defectuosas o faltantes, fugas debidas a abrazaderas flojas o cualquier otro defecto permitirán que el helio pase y se detecte fácilmente. por la máquina La fuente de cualquier fuga se puede identificar y reparar con precisión. El proceso de sonda de rociado se utiliza para lograr el más alto nivel de sensibilidad. El equipo que se utiliza dicta la sensibilidad máxima alcanzable; en el caso de Jurva Leak Testing es 2x10-10 std cc/seg. Esta técnica requiere que el sistema que se está probando sea relativamente hermético antes de la prueba, ya que se requiere un amplio vacío para la prueba. Sin embargo, mediante el uso de dispositivos especiales de estrangulamiento, normalmente se puede realizar una prueba general. La prueba general debe eliminar cualquier fuga importante, lo que permite el uso de una mayor sensibilidad. Los siguientes son ejemplos de sistemas que probamos usando la técnica de sonda de rociado: Hornos de barra A Sistemas de haz de electrones Sistemas láser Equipos de deposición de metal Sistemas de destilación Sistemas de vacío Sniffer ProbeFor esta técnica, el helio se purga por todo el interior del sistema que se está probando. Debido a las propiedades innatas del helio, migra fácilmente por todo el sistema y, en su intento de escapar, penetra cualquier imperfección, incluidas: soldaduras defectuosas (causadas por grietas, agujeros de alfiler, soldaduras incompletas, porosidad, etc.), juntas defectuosas o faltantes, fugas debido a abrazaderas flojas o cualquier otro defecto. Luego se escanea el exterior del sistema usando una sonda conectada al probador de fugas. Cualquier fuga resultará en un aumento del nivel de helio más cercano a la fuente y se detectará fácilmente. Luego se pueden identificar las fuentes de fuga, lo que brinda la oportunidad de reparar y volver a probar de inmediato. A diferencia de la técnica de sonda de rociado, este proceso es muy flexible y se puede adaptar para satisfacer las necesidades de prácticamente cualquier sistema en el que se pueda inyectar helio. No hay limitación práctica de tamaño. Sin embargo, la técnica de la sonda de rastreo no es tan sensible como el proceso de la sonda de rociado debido a la cantidad de helio presente en el aire (aproximadamente 5 ppm). La máxima sensibilidad alcanzable con este procedimiento es de aproximadamente 1x10-6 std cc/seg. No obstante, este proceso es muy superior a otros métodos tradicionales de prueba de fugas, como: prueba de burbujas, emisión acústica, líquido penetrante o prueba de caja de vacío. La siguiente lista es un ejemplo de sistemas que Jurva Leak Testing ha probado usando el proceso de sonda de rastreo: Tanques de almacenamiento (tanto sobre el suelo como bajo tierra) Techos flotantes Tuberías subterráneas Cables subterráneos Sistemas asépticos (refrigeradores instantáneos, intercambiadores de calor, rellenos, etc.) Cualquier recipiente/línea o sistema que se pueda presurizar

Condición: Nuevo



Número de parte: P108347



Precio: $286,976.65CLP



Divisa: Chilean Peso (CLP)

Pfeiffer Adixen Filtro de puerto de entrada para detector de fugas de helio ASM-340 PN 103395
Disponible
1


Filtro de puerto de entrada Adixen de Pfeiffer para el detector de fugas de helio ASM-340 Número de pieza de Pfeiffer Adixen 103395Este es un filtro de puerto de entrada de malla mediana para el detector de fugas de helio ASM-340 diseñado para evitar que el detector ingiera partículas de tamaño mediano.

Condición: Nuevo



Número de parte: P108817



Precio: $192,213.22CLP


Precio regular: $202,329.71CLP



Divisa: Chilean Peso (CLP)

Pfeiffer Adixen ASM 340 Detector de fugas de helio Altavoz Reemplazo NUEVO
Agotado


Reemplazo del altavoz del detector de fugas de helio Pfeiffer Adixen ASM 340 Reemplazo del altavoz únicamente, el detector de fugas se vende por separado Este es un altavoz para un detector de fugas de helio Pfeiffer Adixen ASM340. Hacemos mantenimiento en estos detectores de fugas aquí mismo en Ideal Vacuum. Si necesita mantenimiento o asistencia de mantenimiento, llame al 505-872-0037. Para aplicaciones de mantenimiento y entornos de producción pequeños. El modelo de sobremesa del detector de fugas de helio ASM 340 ofrece detección de fugas en modo vacío (sonda de pulverización) o olfateo (con sondas opcionales). Estos detectores de fugas de helio confiables se pueden usar para encontrar fugas muy precisas en sus sistemas de vacío. El ASM 340 se caracteriza por su potente sistema, su fácil manejo, su tiempo de respuesta ultrarrápido y su breve tiempo de recuperación. Este ASM 340 es un paquete completo y tiene una bomba de vacío preliminar de respaldo de diafragma seco interno de velocidad de bombeo de 2 CFM, y tiene un voltaje universal de 90-240 VCA. La tasa de fuga mínima detectable disponible para esta unidad en modo de vacío es 1x10-12 mbar l/s y en modo sniffer 1x10-9 mbar l/s. El ASM 340 se puede adaptar a aplicaciones específicas con la ayuda de nuestra extensa línea de accesorios para esta unidad multipropósito. El manual de instrucciones de funcionamiento en seco Pfeiffer Adixen ASM-340 y el folleto del producto se pueden descargar en formato PDF a continuación. Fundamentos de la prueba de fugas con helioLa espectrometría de masas con helio, o prueba de fugas con helio, es un medio muy preciso de detección de fugas. Esta tecnología se desarrolló por primera vez para el Proyecto Manhattan durante la Segunda Guerra Mundial para localizar fugas extremadamente pequeñas en el proceso de difusión de gas. En el corazón de las pruebas de fugas de helio se encuentra un equipo complejo llamado espectrómetro de masas de helio. Sencillamente, esta máquina se utiliza para analizar muestras de aire (que se introducen en la máquina a través de bombas de vacío) y proporciona una medida cuantitativa de la cantidad de helio presente en la muestra. En la práctica, una fuga se identifica por un aumento en el nivel de helio analizado por la máquina. Las pruebas de fugas de helio pueden identificar fugas extremadamente pequeñas. Por ejemplo, nuestro equipo puede detectar una fuga tan pequeña que emitiría solo dos centímetros cúbicos de helio (o la cantidad equivalente a dos terrones de azúcar) en 320 años. Si bien muy pocas aplicaciones requieren este nivel de precisión, este ejemplo sirve para resaltar la precisión posible con este proceso. Si bien la detección de fugas de helio puede parecer un procedimiento simple, el proceso implica una combinación de arte y ciencia. El usuario debe asegurarse de que el equipo funcione correctamente y el proceso depende en gran medida de la experiencia del usuario. Considere esta analogía: si bien cualquier persona con suficiente dinero puede comprar un avión, aprender a volar requiere mucha práctica. Lo mismo ocurre con la detección de fugas de helio: asegúrese de que su piloto sepa volar. ¿Por qué es superior el helio? Si bien se utilizan muchos gases en la detección de fugas, las cualidades del helio brindan pruebas superiores. Con una AMU (Unidad de masa atómica) de solo 4, el helio es el gas inerte más liviano. Solo el hidrógeno, con una AMU de 2, es más ligero que el helio. Sin embargo, debido al potencial explosivo del hidrógeno, rara vez se usa. Razones adicionales por las que el helio es un gas trazador superior: Presente solo moderadamente en la atmósfera (aproximadamente 5 partes por millón) Fluye a través de grietas 2.7 veces más rápido que el aire No tóxico No destructivo No explosivo Económico Fácil de usar debido Debido a estos atributos y su alta sensibilidad, la prueba de fugas con helio ha ganado una amplia aceptación en una amplia gama de aplicaciones de prueba de fugas. Los dos modos de prueba principales de Helium Leak Testing, si bien hay una variedad de procedimientos de prueba, en general hay: Dos métodos principales de prueba de fugas de helio: Sonda de pulverización Sonda rastreadora La elección entre estos dos modos se basa en el tamaño del sistema que se está probando , así como el nivel de sensibilidad requerido. Sonda de rociado: proporciona la máxima sensibilidad Para esta técnica, el detector de fugas se conecta directamente al sistema bajo prueba y se evacua el interior del sistema. Una vez que se logra un vacío aceptable, se rocía helio discretamente en el exterior del sistema, prestando especial atención a cualquier ubicación sospechosa. Cualquier fuga en el sistema, incluidas soldaduras defectuosas (causadas por grietas, perforaciones, soldaduras incompletas, porosidad, etc.), juntas defectuosas o faltantes, fugas debidas a abrazaderas flojas o cualquier otro defecto permitirán que el helio pase y se detecte fácilmente. por la máquina La fuente de cualquier fuga se puede identificar y reparar con precisión. El proceso de sonda de rociado se utiliza para lograr el más alto nivel de sensibilidad. El equipo que se utiliza dicta la sensibilidad máxima alcanzable; en el caso de Jurva Leak Testing es 2x10-10 std cc/seg. Esta técnica requiere que el sistema que se está probando sea relativamente hermético antes de la prueba, ya que se requiere un amplio vacío para la prueba. Sin embargo, mediante el uso de dispositivos especiales de estrangulamiento, normalmente se puede realizar una prueba general. La prueba general debe eliminar cualquier fuga importante, lo que permite el uso de una mayor sensibilidad. Los siguientes son ejemplos de sistemas que probamos usando la técnica de sonda de rociado: Hornos de barra A Sistemas de haz de electrones Sistemas láser Equipos de deposición de metal Sistemas de destilación Sistemas de vacío Sonda de rastreo esta técnica, el helio se purga por todo el interior del sistema que se está probando. Debido a las propiedades innatas del helio, migra fácilmente por todo el sistema y, en su intento de escapar, penetra cualquier imperfección, incluidas: soldaduras defectuosas (causadas por grietas, agujeros de alfiler, soldaduras incompletas, porosidad, etc.), juntas defectuosas o faltantes, fugas debido a abrazaderas flojas o cualquier otro defecto. Luego se escanea el exterior del sistema usando una sonda conectada al probador de fugas. Cualquier fuga resultará en un aumento del nivel de helio más cercano a la fuente y se detectará fácilmente. Luego se pueden identificar las fuentes de fuga, lo que brinda la oportunidad de reparar y volver a probar de inmediato. A diferencia de la técnica de sonda de rociado, este proceso es muy flexible y se puede adaptar para satisfacer las necesidades de prácticamente cualquier sistema en el que se pueda inyectar helio. No hay limitación práctica de tamaño. Sin embargo, la técnica de la sonda de rastreo no es tan sensible como el proceso de la sonda de rociado debido a la cantidad de helio presente en el aire (aproximadamente 5 ppm). La máxima sensibilidad alcanzable con este procedimiento es de aproximadamente 1x10-6 std cc/seg. No obstante, este proceso es muy superior a otros métodos tradicionales de prueba de fugas, como: prueba de burbujas, emisión acústica, líquido penetrante o prueba de caja de vacío. La siguiente lista es un ejemplo de sistemas que Jurva Leak Testing ha probado usando el proceso de sonda de rastreo: Tanques de almacenamiento (tanto sobre el suelo como bajo tierra) Techos flotantes Tuberías subterráneas Cables subterráneos Sistemas asépticos (refrigeradores instantáneos, intercambiadores de calor, rellenos, etc.) Cualquier recipiente/línea o sistema que se pueda presurizar

Condición: Nuevo



Número de parte: P108345



Precio: $259,887.67CLP



Divisa: Chilean Peso (CLP)

Pfeiffer Adixen ASM 340 Detector de fugas de helio Placa Bluetooth Reemplazo NUEVO
Disponible
1


Pfeiffer Adixen ASM 340 Detector de fugas de helio Reemplazo de placa Bluetooth Reemplazo de placa Bluetooth solamente, detector de fugas se vende por separado Esta es una placa Bluetooth para un detector de fugas de helio Pfeiffer Adixen ASM340. Hacemos mantenimiento en estos detectores de fugas aquí mismo en Ideal Vacuum. Si necesita mantenimiento o asistencia de mantenimiento, llame al 505-872-0037. Para aplicaciones de mantenimiento y entornos de producción pequeños. El modelo de sobremesa del detector de fugas de helio ASM 340 ofrece detección de fugas en modo vacío (sonda de pulverización) o olfateo (con sondas opcionales). Estos detectores de fugas de helio confiables se pueden usar para encontrar fugas muy precisas en sus sistemas de vacío. El ASM 340 se caracteriza por su potente sistema, su fácil manejo, su tiempo de respuesta ultrarrápido y su breve tiempo de recuperación. Este ASM 340 es un paquete completo y tiene una bomba de vacío preliminar de respaldo de diafragma seco interno de velocidad de bombeo de 2 CFM, y tiene un voltaje universal de 90-240 VCA. La tasa de fuga mínima detectable disponible para esta unidad en modo de vacío es 1x10-12 mbar l/s y en modo sniffer 1x10-9 mbar l/s. El ASM 340 se puede adaptar a aplicaciones específicas con la ayuda de nuestra extensa línea de accesorios para esta unidad multipropósito. El manual de instrucciones de funcionamiento en seco Pfeiffer Adixen ASM-340 y el folleto del producto se pueden descargar en formato PDF a continuación. Fundamentos de la prueba de fugas con helioLa espectrometría de masas con helio, o prueba de fugas con helio, es un medio muy preciso de detección de fugas. Esta tecnología se desarrolló por primera vez para el Proyecto Manhattan durante la Segunda Guerra Mundial para localizar fugas extremadamente pequeñas en el proceso de difusión de gas. En el corazón de las pruebas de fugas de helio se encuentra un equipo complejo llamado espectrómetro de masas de helio. Sencillamente, esta máquina se utiliza para analizar muestras de aire (que se introducen en la máquina a través de bombas de vacío) y proporciona una medida cuantitativa de la cantidad de helio presente en la muestra. En la práctica, una fuga se identifica por un aumento en el nivel de helio analizado por la máquina. Las pruebas de fugas de helio pueden identificar fugas extremadamente pequeñas. Por ejemplo, nuestro equipo puede detectar una fuga tan pequeña que emitiría solo dos centímetros cúbicos de helio (o la cantidad equivalente a dos terrones de azúcar) en 320 años. Si bien muy pocas aplicaciones requieren este nivel de precisión, este ejemplo sirve para resaltar la precisión posible con este proceso. Si bien la detección de fugas de helio puede parecer un procedimiento simple, el proceso implica una combinación de arte y ciencia. El usuario debe asegurarse de que el equipo funcione correctamente y el proceso depende en gran medida de la experiencia del usuario. Considere esta analogía: si bien cualquier persona con suficiente dinero puede comprar un avión, aprender a volar requiere mucha práctica. Lo mismo ocurre con la detección de fugas de helio: asegúrese de que su piloto sepa volar. ¿Por qué es superior el helio? Si bien se utilizan muchos gases en la detección de fugas, las cualidades del helio brindan pruebas superiores. Con una AMU (Unidad de masa atómica) de solo 4, el helio es el gas inerte más liviano. Solo el hidrógeno, con una AMU de 2, es más ligero que el helio. Sin embargo, debido al potencial explosivo del hidrógeno, rara vez se usa. Razones adicionales por las que el helio es un gas trazador superior: Presente solo moderadamente en la atmósfera (aproximadamente 5 partes por millón) Fluye a través de grietas 2.7 veces más rápido que el aire No tóxico No destructivo No explosivo Económico Fácil de usar debido Debido a estos atributos y su alta sensibilidad, la prueba de fugas con helio ha ganado una amplia aceptación en una amplia gama de aplicaciones de prueba de fugas. Los dos modos de prueba principales de Helium Leak Testing, si bien hay una variedad de procedimientos de prueba, en general hay: Dos métodos principales de prueba de fugas de helio: Sonda de pulverización Sonda rastreadora La elección entre estos dos modos se basa en el tamaño del sistema que se está probando , así como el nivel de sensibilidad requerido. Sonda de rociado: proporciona la máxima sensibilidad Para esta técnica, el detector de fugas se conecta directamente al sistema bajo prueba y se evacua el interior del sistema. Una vez que se logra un vacío aceptable, se rocía helio discretamente en el exterior del sistema, prestando especial atención a cualquier ubicación sospechosa. Cualquier fuga en el sistema, incluidas soldaduras defectuosas (causadas por grietas, perforaciones, soldaduras incompletas, porosidad, etc.), juntas defectuosas o faltantes, fugas debidas a abrazaderas flojas o cualquier otro defecto permitirán que el helio pase y se detecte fácilmente. por la máquina La fuente de cualquier fuga se puede identificar y reparar con precisión. El proceso de sonda de rociado se utiliza para lograr el más alto nivel de sensibilidad. El equipo que se utiliza dicta la sensibilidad máxima alcanzable; en el caso de Jurva Leak Testing es 2x10-10 std cc/seg. Esta técnica requiere que el sistema que se está probando sea relativamente hermético antes de la prueba, ya que se requiere un amplio vacío para la prueba. Sin embargo, mediante el uso de dispositivos especiales de estrangulamiento, normalmente se puede realizar una prueba general. La prueba general debe eliminar cualquier fuga importante, lo que permite el uso de una mayor sensibilidad. Los siguientes son ejemplos de sistemas que probamos usando la técnica de sonda de rociado: Hornos de barra A Sistemas de haz de electrones Sistemas láser Equipos de deposición de metal Sistemas de destilación Sistemas de vacío Sonda de rastreo esta técnica, el helio se purga por todo el interior del sistema que se está probando. Debido a las propiedades innatas del helio, migra fácilmente por todo el sistema y, en su intento de escapar, penetra cualquier imperfección, incluidas: soldaduras defectuosas (causadas por grietas, orificios, soldaduras incompletas, porosidad, etc.), juntas defectuosas o faltantes, fugas debido a abrazaderas flojas o cualquier otro defecto. Luego se escanea el exterior del sistema usando una sonda conectada al probador de fugas. Cualquier fuga resultará en un aumento del nivel de helio más cercano a la fuente y se detectará fácilmente. Luego se pueden identificar las fuentes de fuga, lo que brinda la oportunidad de reparar y volver a probar de inmediato. A diferencia de la técnica de sonda de rociado, este proceso es muy flexible y se puede adaptar para satisfacer las necesidades de prácticamente cualquier sistema en el que se pueda inyectar helio. No hay limitación práctica de tamaño. Sin embargo, la técnica de la sonda de rastreo no es tan sensible como el proceso de la sonda de rociado debido a la cantidad de helio presente en el aire (aproximadamente 5 ppm). La máxima sensibilidad alcanzable con este procedimiento es de aproximadamente 1x10-6 std cc/seg. Sin embargo, este proceso es muy superior a otros métodos tradicionales de prueba de fugas, como: prueba de burbujas, emisión acústica, líquido penetrante o prueba de caja de vacío. La siguiente lista es un ejemplo de sistemas que Jurva Leak Testing ha probado usando el proceso de sonda de rastreo: Tanques de almacenamiento (tanto sobre el suelo como bajo tierra) Techos flotantes Tuberías subterráneas Cables subterráneos Sistemas asépticos (refrigeradores instantáneos, intercambiadores de calor, rellenos, etc.) Cualquier recipiente/línea o sistema que se pueda presurizar

Condición: Nuevo



Número de parte: P108346



Precio: $541,358.35CLP



Divisa: Chilean Peso (CLP)

Pfeiffer Adixen ASM 340 Detector de fugas de helio PI1 Reemplazo del indicador NUEVO
Disponible
1


NUEVO Pfeiffer Adixen ASM 340 Detector de fugas de helio PI1 Medidor Pieza de repuesto PI1 (aluminio) Solo medidor, el detector de fugas se vende por separado Este es un medidor PI1 para un detector de fugas de helio Pfeiffer Adixen ASM340. Hacemos mantenimiento en estos detectores de fugas aquí mismo en Ideal Vacuum. Si necesita mantenimiento o asistencia de mantenimiento, llame al 505-872-0037. Para aplicaciones de mantenimiento y pequeños entornos de producción. El modelo de sobremesa del detector de fugas de helio ASM 340 ofrece detección de fugas en modo vacío (sonda de pulverización) o olfateo (con sondas opcionales). Estos detectores de fugas de helio confiables se pueden usar para encontrar fugas muy precisas en sus sistemas de vacío. El ASM 340 se caracteriza por su potente sistema, su fácil manejo, su tiempo de respuesta ultrarrápido y su breve tiempo de recuperación. Este ASM 340 es un paquete completo y tiene una bomba de vacío preliminar de respaldo de diafragma seco interno de velocidad de bombeo de 2 CFM, y tiene un voltaje universal de 90-240 VCA. La tasa de fuga mínima detectable disponible para esta unidad en modo de vacío es 1x10-12 mbar l/s y en modo sniffer 1x10-9 mbar l/s. El ASM 340 se puede adaptar a aplicaciones específicas con la ayuda de nuestra extensa línea de accesorios para esta unidad multipropósito. El manual de instrucciones de funcionamiento en seco Pfeiffer Adixen ASM-340 y el folleto del producto se pueden descargar en formato PDF a continuación. Fundamentos de la prueba de fugas con helio La espectrometría de masas con helio, o prueba de fugas con helio, es un medio muy preciso de detección de fugas. Esta tecnología se desarrolló por primera vez para el Proyecto Manhattan durante la Segunda Guerra Mundial para localizar fugas extremadamente pequeñas en el proceso de difusión de gas. En el corazón de las pruebas de fugas de helio se encuentra un equipo complejo llamado espectrómetro de masas de helio. Sencillamente, esta máquina se utiliza para analizar muestras de aire (que se introducen en la máquina a través de bombas de vacío) y proporciona una medida cuantitativa de la cantidad de helio presente en la muestra. En la práctica, una fuga se identifica por un aumento en el nivel de helio que analiza la máquina. Las pruebas de fugas con helio pueden identificar fugas extremadamente pequeñas. Por ejemplo, nuestro equipo puede detectar una fuga tan pequeña que emitiría solo dos centímetros cúbicos de helio (o la cantidad equivalente a dos terrones de azúcar) en 320 años. Si bien muy pocas aplicaciones requieren este nivel de precisión, este ejemplo sirve para resaltar la precisión posible con este proceso. Si bien la detección de fugas de helio puede parecer un procedimiento simple, el proceso implica una combinación de arte y ciencia. El usuario debe asegurarse de que el equipo funcione correctamente y el proceso depende en gran medida de la experiencia del usuario. Considere esta analogía: si bien cualquier persona con suficiente dinero puede comprar un avión, aprender a volar requiere mucha práctica. Lo mismo ocurre con la detección de fugas de helio: asegúrese de que su piloto sepa volar. ¿Por qué el helio es superior? Si bien se utilizan muchos gases en la detección de fugas, las cualidades del helio brindan pruebas superiores. Con una AMU (Unidad de masa atómica) de solo 4, el helio es el gas inerte más liviano. Solo el hidrógeno, con una AMU de 2, es más ligero que el helio. Sin embargo, debido al potencial explosivo del hidrógeno, rara vez se usa. Razones adicionales por las que el helio es un gas trazador superior: Presente solo modestamente en la atmósfera (aproximadamente 5 partes por millón) Fluye a través de grietas 2,7 veces más rápido que el aire No tóxico No destructivo No explosivo Económico Fácil de usar Debido a estos atributos y su alta sensibilidad, las pruebas de fugas de helio ha ganado una amplia aceptación en una amplia gama de aplicaciones de prueba de fugas. Los dos modos principales de prueba de fugas de helio, si bien hay una variedad de procedimientos de prueba, en general existen: Dos métodos principales de prueba de fugas de helio: Sonda de rociado Sonda rastreadora La elección entre estos dos modos se basa en el tamaño del sistema que se está probando , así como, el nivel de sensibilidad requerido. Sonda de rociado: brinda la máxima sensibilidad Para esta técnica, el detector de fugas se conecta directamente al sistema bajo prueba y se evacua el interior del sistema. Una vez que se logra un vacío aceptable, se rocía helio discretamente en el exterior del sistema, prestando especial atención a cualquier ubicación sospechosa. Cualquier fuga en el sistema, incluidas soldaduras defectuosas (causadas por grietas, perforaciones, soldaduras incompletas, porosidad, etc.), juntas defectuosas o faltantes, fugas debidas a abrazaderas flojas o cualquier otro defecto permitirán que el helio pase y se detecte fácilmente. por la máquina La fuente de cualquier fuga se puede identificar y reparar con precisión. El proceso de sonda de pulverización se utiliza para lograr el más alto nivel de sensibilidad. El equipo que se utiliza dicta la sensibilidad máxima alcanzable; en el caso de Jurva Leak Testing es 2x10-10 std cc/seg. Esta técnica requiere que el sistema que se está probando sea relativamente hermético antes de la prueba, ya que se requiere un amplio vacío para la prueba. Sin embargo, mediante el uso de dispositivos especiales de estrangulamiento, normalmente se puede realizar una prueba general. La prueba macroscópica debe eliminar cualquier fuga importante, lo que permite el uso de una mayor sensibilidad. Los siguientes son ejemplos de sistemas que probamos utilizando la técnica de sonda de rociado: Hornos de barra A Sistemas de haz de electrones Sistemas láser Equipos de deposición de metales Sistemas de destilación Sistemas de vacío Sonda de rastreo Para esta técnica, se purga helio por todo el interior del sistema que se está probando. Debido a las propiedades innatas del helio, migra fácilmente por todo el sistema y, en su intento de escapar, penetra cualquier imperfección, incluidas: soldaduras defectuosas (causadas por grietas, orificios, soldaduras incompletas, porosidad, etc.), juntas defectuosas o faltantes, fugas debido a abrazaderas flojas o cualquier otro defecto. Luego se escanea el exterior del sistema usando una sonda conectada al probador de fugas. Cualquier fuga resultará en un aumento del nivel de helio más cercano a la fuente y se detectará fácilmente. Luego se pueden identificar las fuentes de fuga, lo que brinda la oportunidad de reparar y volver a probar de inmediato. A diferencia de la técnica de la sonda de pulverización, este proceso es muy flexible y se puede adaptar para satisfacer las necesidades de prácticamente cualquier sistema en el que se pueda inyectar helio. No hay limitación práctica de tamaño. Sin embargo, la técnica de la sonda de rastreo no es tan sensible como el proceso de la sonda de rociado debido a la cantidad de helio presente en el aire (aproximadamente 5 ppm). La máxima sensibilidad alcanzable con este procedimiento es de aproximadamente 1x10-6 std cc/seg. Sin embargo, este proceso es muy superior a otros métodos tradicionales de prueba de fugas, como: prueba de burbujas, emisión acústica, líquido penetrante o prueba de caja de vacío. La siguiente lista es un ejemplo de los sistemas que Jurva Leak Testing ha probado usando el proceso de sonda de rastreo: Tanques de almacenamiento (tanto sobre el suelo como bajo tierra) Techos flotantes Tuberías subterráneas Cables subterráneos Sistemas asépticos (refrigeradores instantáneos, intercambiadores de calor, rellenos, etc.) Cualquiera recipiente/línea o sistema que puede ser presurizado

Condición: Nuevo



Número de parte: P108342



Precio: $748,380.87CLP



Divisa: Chilean Peso (CLP)

Pfeiffer Adixen ASM 340 Detector de fugas de helio Reemplazo de fugas calibrado NUEVO
Agotado
Esperando 2
Llegada Anticipada 1 on 2024-11-15


NUEVO Detector de fugas de helio Pfeiffer Adixen ASM 340 Pieza de reemplazo de fuga calibrada Solo fuga calibrada, el detector de fugas se vende por separado Esta es una fuga calibrada para un detector de fugas de helio Pfeiffer Adixen ASM340. Hacemos mantenimiento en estos detectores de fugas aquí mismo en Ideal Vacuum. Si necesita mantenimiento o asistencia de mantenimiento, llame al 505-872-0037. Para aplicaciones de mantenimiento y entornos de producción pequeños. El modelo de sobremesa del detector de fugas de helio ASM 340 ofrece detección de fugas en modo vacío (sonda de pulverización) o olfateo (con sondas opcionales). Estos detectores de fugas de helio confiables se pueden usar para encontrar fugas muy precisas en sus sistemas de vacío. El ASM 340 se caracteriza por su potente sistema, su fácil manejo, su tiempo de respuesta ultrarrápido y su breve tiempo de recuperación. Este ASM 340 es un paquete completo y tiene una bomba de vacío preliminar de respaldo de diafragma seco interno de velocidad de bombeo de 2 CFM, y tiene un voltaje universal de 90-240 VCA. La tasa de fuga mínima detectable disponible para esta unidad en modo de vacío es 1x10-12 mbar l/s y en modo sniffer 1x10-9 mbar l/s. El ASM 340 se puede adaptar a aplicaciones específicas con la ayuda de nuestra extensa línea de accesorios para esta unidad multipropósito. El manual de instrucciones de funcionamiento en seco Pfeiffer Adixen ASM-340 y el folleto del producto se pueden descargar en formato PDF a continuación. Fundamentos de la prueba de fugas con helioLa espectrometría de masas con helio, o prueba de fugas con helio, es un medio muy preciso de detección de fugas. Esta tecnología se desarrolló por primera vez para el Proyecto Manhattan durante la Segunda Guerra Mundial para localizar fugas extremadamente pequeñas en el proceso de difusión de gas. En el corazón de las pruebas de fugas de helio se encuentra un equipo complejo llamado espectrómetro de masas de helio. Sencillamente, esta máquina se utiliza para analizar muestras de aire (que se introducen en la máquina a través de bombas de vacío) y proporciona una medida cuantitativa de la cantidad de helio presente en la muestra. En la práctica, una fuga se identifica por un aumento en el nivel de helio analizado por la máquina. Las pruebas de fugas de helio pueden identificar fugas extremadamente pequeñas. Por ejemplo, nuestro equipo puede detectar una fuga tan pequeña que emitiría solo dos centímetros cúbicos de helio (o la cantidad equivalente a dos terrones de azúcar) en 320 años. Si bien muy pocas aplicaciones requieren este nivel de precisión, este ejemplo sirve para resaltar la precisión posible con este proceso. Si bien la detección de fugas de helio puede parecer un procedimiento simple, el proceso implica una combinación de arte y ciencia. El usuario debe asegurarse de que el equipo funcione correctamente y el proceso depende en gran medida de la experiencia del usuario. Considere esta analogía: si bien cualquier persona con suficiente dinero puede comprar un avión, aprender a volar requiere mucha práctica. Lo mismo ocurre con la detección de fugas de helio: asegúrese de que su piloto sepa volar. ¿Por qué es superior el helio? Si bien se utilizan muchos gases en la detección de fugas, las cualidades del helio brindan pruebas superiores. Con una AMU (Unidad de masa atómica) de solo 4, el helio es el gas inerte más liviano. Solo el hidrógeno, con una AMU de 2, es más ligero que el helio. Sin embargo, debido al potencial explosivo del hidrógeno, rara vez se usa. Razones adicionales por las que el helio es un gas trazador superior: Presente solo moderadamente en la atmósfera (aproximadamente 5 partes por millón) Fluye a través de grietas 2.7 veces más rápido que el aire No tóxico No destructivo No explosivo Económico Fácil de usar debido Debido a estos atributos y su alta sensibilidad, la prueba de fugas con helio ha ganado una amplia aceptación en una amplia gama de aplicaciones de prueba de fugas. Los dos modos de prueba principales de Helium Leak Testing, si bien hay una variedad de procedimientos de prueba, en general hay: Dos métodos principales de prueba de fugas de helio: Sonda de pulverización Sonda rastreadora La elección entre estos dos modos se basa en el tamaño del sistema que se está probando , así como el nivel de sensibilidad requerido. Sonda de rociado: proporciona la máxima sensibilidad Para esta técnica, el detector de fugas se conecta directamente al sistema bajo prueba y se evacua el interior del sistema. Una vez que se logra un vacío aceptable, se rocía helio discretamente en el exterior del sistema, prestando especial atención a cualquier ubicación sospechosa. Cualquier fuga en el sistema, incluidas soldaduras defectuosas (causadas por grietas, perforaciones, soldaduras incompletas, porosidad, etc.), juntas defectuosas o faltantes, fugas debidas a abrazaderas flojas o cualquier otro defecto permitirán que el helio pase y se detecte fácilmente. por la máquina La fuente de cualquier fuga se puede identificar y reparar con precisión. El proceso de sonda de rociado se utiliza para lograr el más alto nivel de sensibilidad. El equipo que se utiliza dicta la sensibilidad máxima alcanzable; en el caso de Jurva Leak Testing es 2x10-10 std cc/seg. Esta técnica requiere que el sistema que se está probando sea relativamente hermético antes de la prueba, ya que se requiere un amplio vacío para la prueba. Sin embargo, mediante el uso de dispositivos especiales de estrangulamiento, normalmente se puede realizar una prueba general. La prueba general debe eliminar cualquier fuga importante, lo que permite el uso de una mayor sensibilidad. Los siguientes son ejemplos de sistemas que probamos usando la técnica de sonda de rociado: Hornos de barra A Sistemas de haz de electrones Sistemas láser Equipos de deposición de metal Sistemas de destilación Sistemas de vacío Sonda de rastreo esta técnica, el helio se purga por todo el interior del sistema que se está probando. Debido a las propiedades innatas del helio, migra fácilmente por todo el sistema y, en su intento de escapar, penetra cualquier imperfección, incluidas: soldaduras defectuosas (causadas por grietas, orificios, soldaduras incompletas, porosidad, etc.), juntas defectuosas o faltantes, fugas debido a abrazaderas flojas o cualquier otro defecto. Luego se escanea el exterior del sistema usando una sonda conectada al probador de fugas. Cualquier fuga resultará en un aumento del nivel de helio más cercano a la fuente y se detectará fácilmente. Luego se pueden identificar las fuentes de fuga, lo que brinda la oportunidad de reparar y volver a probar de inmediato. A diferencia de la técnica de sonda de rociado, este proceso es muy flexible y se puede adaptar para satisfacer las necesidades de prácticamente cualquier sistema en el que se pueda inyectar helio. No hay limitación práctica de tamaño. Sin embargo, la técnica de la sonda de rastreo no es tan sensible como el proceso de la sonda de rociado debido a la cantidad de helio presente en el aire (aproximadamente 5 ppm). La máxima sensibilidad alcanzable con este procedimiento es de aproximadamente 1x10-6 std cc/seg. Sin embargo, este proceso es muy superior a otros métodos tradicionales de prueba de fugas, como: prueba de burbujas, emisión acústica, líquido penetrante o prueba de caja de vacío. La siguiente lista es un ejemplo de sistemas que Jurva Leak Testing ha probado usando el proceso de sonda de rastreo: Tanques de almacenamiento (tanto sobre el suelo como bajo tierra) Techos flotantes Tuberías subterráneas Cables subterráneos Sistemas asépticos (refrigeradores instantáneos, intercambiadores de calor, rellenos, etc.) Cualquier recipiente/línea o sistema que se pueda presurizar

Condición: Nuevo



Número de parte: P108341



Precio: $1,237,471.70CLP



Divisa: Chilean Peso (CLP)

Pfeiffer Adixen ASM 142, 18T, 182TD+, reemplazo de la placa del panel de control del detector de fugas de helio NUEVO
Agotado


Reemplazo de la placa del panel de control del detector de fugas de helio Pfeiffer Adixen ASM 142, ASM 182T y ASM 182TD+ Placa del panel de control solamente, el detector de fugas se vende por separado Esta es una nueva placa del panel de control para un detector de fugas de helio Pfeiffer Adixen ASM142, 182T o 182TD+. Hacemos mantenimiento en estos detectores de fugas aquí mismo en Ideal Vacuum. Si necesita mantenimiento o asistencia de mantenimiento, llame al 505-872-0037. Para aplicaciones de mantenimiento, así como también para entornos de producción pequeños, estos detectores de fugas de helio confiables se pueden usar para encontrar fugas muy precisas en sus sistemas de vacío. Fundamentos de la prueba de fugas con helioLa espectrometría de masas con helio, o prueba de fugas con helio, es un medio muy preciso de detección de fugas. Esta tecnología se desarrolló por primera vez para el Proyecto Manhattan durante la Segunda Guerra Mundial para localizar fugas extremadamente pequeñas en el proceso de difusión de gas. En el corazón de las pruebas de fugas de helio se encuentra un equipo complejo llamado espectrómetro de masas de helio. Sencillamente, esta máquina se utiliza para analizar muestras de aire (que se introducen en la máquina a través de bombas de vacío) y proporciona una medida cuantitativa de la cantidad de helio presente en la muestra. En la práctica, una fuga se identifica por un aumento en el nivel de helio analizado por la máquina. Las pruebas de fugas de helio pueden identificar fugas extremadamente pequeñas. Por ejemplo, nuestro equipo puede detectar una fuga tan pequeña que emitiría solo dos centímetros cúbicos de helio (o la cantidad equivalente a dos terrones de azúcar) en 320 años. Si bien muy pocas aplicaciones requieren este nivel de precisión, este ejemplo sirve para resaltar la precisión posible con este proceso. Si bien la detección de fugas de helio puede parecer un procedimiento simple, el proceso implica una combinación de arte y ciencia. El usuario debe asegurarse de que el equipo funcione correctamente y el proceso depende en gran medida de la experiencia del usuario. Considere esta analogía: si bien cualquier persona con suficiente dinero puede comprar un avión, aprender a volar requiere mucha práctica. Lo mismo ocurre con la detección de fugas de helio: asegúrese de que su piloto sepa volar. ¿Por qué es superior el helio? Si bien se utilizan muchos gases en la detección de fugas, las cualidades del helio brindan pruebas superiores. Con una AMU (Unidad de masa atómica) de solo 4, el helio es el gas inerte más liviano. Solo el hidrógeno, con una AMU de 2, es más ligero que el helio. Sin embargo, debido al potencial explosivo del hidrógeno, rara vez se usa. Razones adicionales por las que el helio es un gas trazador superior: Presente solo moderadamente en la atmósfera (aproximadamente 5 partes por millón) Fluye a través de grietas 2.7 veces más rápido que el aire No tóxico No destructivo No explosivo Económico Fácil de usar debido Debido a estos atributos y su alta sensibilidad, la prueba de fugas con helio ha ganado una amplia aceptación en una amplia gama de aplicaciones de prueba de fugas. Los dos modos de prueba principales de Helium Leak Testing, si bien hay una variedad de procedimientos de prueba, en general hay: Dos métodos principales de prueba de fugas de helio: Sonda de pulverización Sonda rastreadora La elección entre estos dos modos se basa en el tamaño del sistema que se está probando , así como el nivel de sensibilidad requerido. Sonda de rociado: proporciona la máxima sensibilidad Para esta técnica, el detector de fugas se conecta directamente al sistema bajo prueba y se evacua el interior del sistema. Una vez que se logra un vacío aceptable, se rocía helio discretamente en el exterior del sistema, prestando especial atención a cualquier ubicación sospechosa. Cualquier fuga en el sistema, incluidas soldaduras defectuosas (causadas por grietas, perforaciones, soldaduras incompletas, porosidad, etc.), juntas defectuosas o faltantes, fugas debidas a abrazaderas flojas o cualquier otro defecto permitirán que el helio pase y se detecte fácilmente. por la máquina La fuente de cualquier fuga se puede identificar y reparar con precisión. El proceso de sonda de rociado se utiliza para lograr el más alto nivel de sensibilidad. El equipo que se utiliza dicta la sensibilidad máxima alcanzable; en el caso de Jurva Leak Testing es 2x10-10 std cc/seg. Esta técnica requiere que el sistema que se está probando sea relativamente hermético antes de la prueba, ya que se requiere un amplio vacío para la prueba. Sin embargo, mediante el uso de dispositivos especiales de estrangulamiento, normalmente se puede realizar una prueba general. La prueba general debe eliminar cualquier fuga importante, lo que permite el uso de una mayor sensibilidad. Los siguientes son ejemplos de sistemas que probamos usando la técnica de sonda de rociado: Hornos de barra A Sistemas de haz de electrones Sistemas láser Equipos de deposición de metal Sistemas de destilación Sistemas de vacío Sonda de rastreo esta técnica, el helio se purga por todo el interior del sistema que se está probando. Debido a las propiedades innatas del helio, migra fácilmente por todo el sistema y, en su intento de escapar, penetra cualquier imperfección, incluidas: soldaduras defectuosas (causadas por grietas, orificios, soldaduras incompletas, porosidad, etc.), juntas defectuosas o faltantes, fugas debido a abrazaderas flojas, o cualquier otro defecto. Luego se escanea el exterior del sistema usando una sonda conectada al probador de fugas. Cualquier fuga resultará en un aumento del nivel de helio más cercano a la fuente y se detectará fácilmente. Luego se pueden identificar las fuentes de fuga, lo que brinda la oportunidad de reparar y volver a probar de inmediato. A diferencia de la técnica de sonda de rociado, este proceso es muy flexible y se puede adaptar para satisfacer las necesidades de prácticamente cualquier sistema en el que se pueda inyectar helio. No hay limitación práctica de tamaño. Sin embargo, la técnica de la sonda de rastreo no es tan sensible como el proceso de la sonda de rociado debido a la cantidad de helio presente en el aire (aproximadamente 5 ppm). La máxima sensibilidad alcanzable con este procedimiento es de aproximadamente 1x10-6 std cc/seg. No obstante, este proceso es muy superior a otros métodos tradicionales de prueba de fugas, como: prueba de burbujas, emisión acústica, líquido penetrante o prueba de caja de vacío. La siguiente lista es un ejemplo de sistemas que Jurva Leak Testing ha probado usando el proceso de sonda de rastreo: Tanques de almacenamiento (tanto sobre el suelo como bajo tierra) Techos flotantes Tuberías subterráneas Cables subterráneos Sistemas asépticos (refrigeradores instantáneos, intercambiadores de calor, rellenos, etc.) Cualquier recipiente/línea o sistema que se pueda presurizar

Condición: Nuevo



Número de parte: P1011148



Precio: $1,348,512.03CLP



Divisa: Chilean Peso (CLP)

Pfeiffer Adixen ASM 340 Detector de fugas de helio Analizador 3G Filamento celular Reemplazo NUEVO
Disponible
4


Pfeiffer Adixen ASM 340 Detector de fugas de helio Pieza de repuesto del filamento de la celda del analizador 3G (también funciona con el modelo ASM 380 LD.) Solo el filamento, el detector de fugas se vende por separado Este es un reemplazo del filamento de la celda del analizador 3G para un detector de fugas de helio Pfeiffer Adixen ASM340. Hacemos mantenimiento en estos detectores de fugas aquí mismo en Ideal Vacuum. Si necesita mantenimiento o asistencia de mantenimiento, llame al 505-872-0037. Para aplicaciones de mantenimiento y entornos de producción pequeños. El modelo de sobremesa del detector de fugas de helio ASM 340 ofrece detección de fugas en modo vacío (sonda de pulverización) o olfateo (con sondas opcionales). Estos detectores de fugas de helio confiables se pueden usar para encontrar fugas muy precisas en sus sistemas de vacío. El ASM 340 se caracteriza por su potente sistema, su fácil manejo, su tiempo de respuesta ultrarrápido y su breve tiempo de recuperación. Este ASM 340 es un paquete completo y tiene una bomba de vacío preliminar de respaldo de diafragma seco interno de velocidad de bombeo de 2 CFM, y tiene un voltaje universal de 90-240 VCA. La tasa de fuga mínima detectable disponible para esta unidad en modo de vacío es 1x10-12 mbar l/s y en modo sniffer 1x10-9 mbar l/s. El ASM 340 se puede adaptar a aplicaciones específicas con la ayuda de nuestra extensa línea de accesorios para esta unidad multipropósito. El manual de instrucciones de funcionamiento en seco Pfeiffer Adixen ASM-340 y el folleto del producto se pueden descargar en formato PDF a continuación. Fundamentos de la prueba de fugas con helioLa espectrometría de masas con helio, o prueba de fugas con helio, es un medio muy preciso de detección de fugas. Esta tecnología se desarrolló por primera vez para el Proyecto Manhattan durante la Segunda Guerra Mundial para localizar fugas extremadamente pequeñas en el proceso de difusión de gas. En el corazón de las pruebas de fugas de helio se encuentra un equipo complejo llamado espectrómetro de masas de helio. Sencillamente, esta máquina se utiliza para analizar muestras de aire (que se introducen en la máquina a través de bombas de vacío) y proporciona una medida cuantitativa de la cantidad de helio presente en la muestra. En la práctica, una fuga se identifica por un aumento en el nivel de helio analizado por la máquina. Las pruebas de fugas de helio pueden identificar fugas extremadamente pequeñas. Por ejemplo, nuestro equipo puede detectar una fuga tan pequeña que emitiría solo dos centímetros cúbicos de helio (o la cantidad equivalente a dos terrones de azúcar) en 320 años. Si bien muy pocas aplicaciones requieren este nivel de precisión, este ejemplo sirve para resaltar la precisión posible con este proceso. Si bien la detección de fugas de helio puede parecer un procedimiento simple, el proceso implica una combinación de arte y ciencia. El usuario debe asegurarse de que el equipo funcione correctamente y el proceso depende en gran medida de la experiencia del usuario. Considere esta analogía: si bien cualquier persona con suficiente dinero puede comprar un avión, aprender a volar requiere mucha práctica. Lo mismo ocurre con la detección de fugas de helio: asegúrese de que su piloto sepa volar. ¿Por qué es superior el helio? Si bien se utilizan muchos gases en la detección de fugas, las cualidades del helio brindan pruebas superiores. Con una AMU (Unidad de masa atómica) de solo 4, el helio es el gas inerte más liviano. Solo el hidrógeno, con una AMU de 2, es más ligero que el helio. Sin embargo, debido al potencial explosivo del hidrógeno, rara vez se usa. Razones adicionales por las que el helio es un gas trazador superior: Presente solo moderadamente en la atmósfera (aproximadamente 5 partes por millón) Fluye a través de grietas 2.7 veces más rápido que el aire No tóxico No destructivo No explosivo Económico Fácil de usar debido Debido a estos atributos y su alta sensibilidad, la prueba de fugas con helio ha ganado una amplia aceptación en una amplia gama de aplicaciones de prueba de fugas. Los dos modos de prueba principales de Helium Leak Testing, si bien hay una variedad de procedimientos de prueba, en general hay: Dos métodos principales de prueba de fugas de helio: Sonda de pulverización Sonda rastreadora La elección entre estos dos modos se basa en el tamaño del sistema que se está probando , así como el nivel de sensibilidad requerido. Sonda de rociado: proporciona la máxima sensibilidad Para esta técnica, el detector de fugas se conecta directamente al sistema bajo prueba y se evacua el interior del sistema. Una vez que se logra un vacío aceptable, se rocía helio discretamente en el exterior del sistema, prestando especial atención a cualquier ubicación sospechosa. Cualquier fuga en el sistema, incluidas soldaduras defectuosas (causadas por grietas, perforaciones, soldaduras incompletas, porosidad, etc.), juntas defectuosas o faltantes, fugas debidas a abrazaderas flojas o cualquier otro defecto permitirán que el helio pase y se detecte fácilmente. por la máquina La fuente de cualquier fuga se puede identificar y reparar con precisión. El proceso de sonda de rociado se utiliza para lograr el más alto nivel de sensibilidad. El equipo que se utiliza dicta la sensibilidad máxima alcanzable; en el caso de Jurva Leak Testing es 2x10-10 std cc/seg. Esta técnica requiere que el sistema que se está probando sea relativamente hermético antes de la prueba, ya que se requiere un amplio vacío para la prueba. Sin embargo, mediante el uso de dispositivos especiales de estrangulamiento, normalmente se puede realizar una prueba general. La prueba general debe eliminar cualquier fuga importante, lo que permite el uso de una mayor sensibilidad. Los siguientes son ejemplos de sistemas que probamos usando la técnica de sonda de rociado: Hornos de barra A Sistemas de haz de electrones Sistemas láser Equipos de deposición de metal Sistemas de destilación Sistemas de vacío Sonda de rastreo esta técnica, el helio se purga por todo el interior del sistema que se está probando. Debido a las propiedades innatas del helio, migra fácilmente por todo el sistema y, en su intento de escapar, penetra cualquier imperfección, incluidas: soldaduras defectuosas (causadas por grietas, orificios, soldaduras incompletas, porosidad, etc.), juntas defectuosas o faltantes, fugas debido a abrazaderas flojas o cualquier otro defecto. Luego se escanea el exterior del sistema usando una sonda conectada al probador de fugas. Cualquier fuga resultará en un aumento del nivel de helio más cercano a la fuente y se detectará fácilmente. Luego se pueden identificar las fuentes de fuga, lo que brinda la oportunidad de reparar y volver a probar de inmediato. A diferencia de la técnica de sonda de rociado, este proceso es muy flexible y se puede adaptar para satisfacer las necesidades de prácticamente cualquier sistema en el que se pueda inyectar helio. No hay limitación práctica de tamaño. Sin embargo, la técnica de la sonda de rastreo no es tan sensible como el proceso de la sonda de rociado debido a la cantidad de helio presente en el aire (aproximadamente 5 ppm). La máxima sensibilidad alcanzable con este procedimiento es de aproximadamente 1x10-6 std cc/seg. Sin embargo, este proceso es muy superior a otros métodos tradicionales de prueba de fugas, como: prueba de burbujas, emisión acústica, líquido penetrante o prueba de caja de vacío. La siguiente lista es un ejemplo de sistemas que Jurva Leak Testing ha probado usando el proceso de sonda de rastreo: Tanques de almacenamiento (tanto sobre el suelo como bajo tierra) Techos flotantes Tuberías subterráneas Cables subterráneos Sistemas asépticos (refrigeradores instantáneos, intercambiadores de calor, rellenos, etc.) Cualquier recipiente/línea o sistema que se pueda presurizar

Condición: Nuevo



Número de parte: P108349



Precio: $1,469,849.12CLP



Divisa: Chilean Peso (CLP)

Pfeiffer Adixen ASM 340 Reemplazo de la placa principal del detector de fugas de helio NUEVO
Agotado


NUEVO Pfeiffer Adixen ASM 340 Detector de fugas de helio Placa principal Reemplazo de la placa principal Solo la placa principal, el detector de fugas se vende por separado Esta es una placa de control principal para un detector de fugas de helio Pfeiffer Adixen ASM340. Hacemos mantenimiento en estos detectores de fugas aquí mismo en Ideal Vacuum. Si necesita mantenimiento o asistencia de mantenimiento, llame al 505-872-0037. Para aplicaciones de mantenimiento y entornos de producción pequeños. El modelo de sobremesa del detector de fugas de helio ASM 340 ofrece detección de fugas en modo vacío (sonda de pulverización) o olfateo (con sondas opcionales). Estos detectores de fugas de helio confiables se pueden usar para encontrar fugas muy precisas en sus sistemas de vacío. El ASM 340 se caracteriza por su potente sistema, su fácil manejo, su tiempo de respuesta ultrarrápido y su breve tiempo de recuperación. Este ASM 340 es un paquete completo y tiene una bomba de vacío preliminar de respaldo de diafragma seco interno de velocidad de bombeo de 2 CFM, y tiene un voltaje universal de 90-240 VCA. La tasa de fuga mínima detectable disponible para esta unidad en modo de vacío es 1x10-12 mbar l/s y en modo sniffer 1x10-9 mbar l/s. El ASM 340 se puede adaptar a aplicaciones específicas con la ayuda de nuestra extensa línea de accesorios para esta unidad multipropósito. El manual de instrucciones de funcionamiento en seco Pfeiffer Adixen ASM-340 y el folleto del producto se pueden descargar en formato PDF a continuación. Fundamentos de la prueba de fugas con helioLa espectrometría de masas con helio, o prueba de fugas con helio, es un medio muy preciso de detección de fugas. Esta tecnología se desarrolló por primera vez para el Proyecto Manhattan durante la Segunda Guerra Mundial para localizar fugas extremadamente pequeñas en el proceso de difusión de gas. En el corazón de las pruebas de fugas de helio se encuentra un equipo complejo llamado espectrómetro de masas de helio. Sencillamente, esta máquina se utiliza para analizar muestras de aire (que se introducen en la máquina a través de bombas de vacío) y proporciona una medida cuantitativa de la cantidad de helio presente en la muestra. En la práctica, una fuga se identifica por un aumento en el nivel de helio analizado por la máquina. Las pruebas de fugas de helio pueden identificar fugas extremadamente pequeñas. Por ejemplo, nuestro equipo puede detectar una fuga tan pequeña que emitiría solo dos centímetros cúbicos de helio (o la cantidad equivalente a dos terrones de azúcar) en 320 años. Si bien muy pocas aplicaciones requieren este nivel de precisión, este ejemplo sirve para resaltar la precisión posible con este proceso. Si bien la detección de fugas de helio puede parecer un procedimiento simple, el proceso implica una combinación de arte y ciencia. El usuario debe asegurarse de que el equipo funcione correctamente y el proceso depende en gran medida de la experiencia del usuario. Considere esta analogía: si bien cualquier persona con suficiente dinero puede comprar un avión, aprender a volar requiere mucha práctica. Lo mismo ocurre con la detección de fugas de helio: asegúrese de que su piloto sepa volar. ¿Por qué es superior el helio? Si bien se utilizan muchos gases en la detección de fugas, las cualidades del helio brindan pruebas superiores. Con una AMU (Unidad de masa atómica) de solo 4, el helio es el gas inerte más liviano. Solo el hidrógeno, con una AMU de 2, es más ligero que el helio. Sin embargo, debido al potencial explosivo del hidrógeno, rara vez se usa. Razones adicionales por las que el helio es un gas trazador superior: Presente solo moderadamente en la atmósfera (aproximadamente 5 partes por millón) Fluye a través de grietas 2.7 veces más rápido que el aire No tóxico No destructivo No explosivo Económico Fácil de usar debido Debido a estos atributos y su alta sensibilidad, la prueba de fugas con helio ha ganado una amplia aceptación en una amplia gama de aplicaciones de prueba de fugas. Los dos modos de prueba principales de Helium Leak Testing, si bien hay una variedad de procedimientos de prueba, en general hay: Dos métodos principales de prueba de fugas de helio: Sonda de pulverización Sonda rastreadora La elección entre estos dos modos se basa en el tamaño del sistema que se está probando , así como el nivel de sensibilidad requerido. Sonda de rociado: proporciona la máxima sensibilidad Para esta técnica, el detector de fugas se conecta directamente al sistema bajo prueba y se evacua el interior del sistema. Una vez que se logra un vacío aceptable, se rocía helio discretamente en el exterior del sistema, prestando especial atención a cualquier ubicación sospechosa. Cualquier fuga en el sistema, incluidas soldaduras defectuosas (causadas por grietas, perforaciones, soldaduras incompletas, porosidad, etc.), juntas defectuosas o faltantes, fugas debidas a abrazaderas flojas o cualquier otro defecto permitirán que el helio pase y se detecte fácilmente. por la máquina La fuente de cualquier fuga se puede identificar y reparar con precisión. El proceso de sonda de rociado se utiliza para lograr el más alto nivel de sensibilidad. El equipo que se utiliza dicta la sensibilidad máxima alcanzable; en el caso de Jurva Leak Testing es 2x10-10 std cc/seg. Esta técnica requiere que el sistema que se está probando sea relativamente hermético antes de la prueba, ya que se requiere un amplio vacío para la prueba. Sin embargo, mediante el uso de dispositivos especiales de estrangulamiento, normalmente se puede realizar una prueba general. La prueba general debe eliminar cualquier fuga importante, lo que permite el uso de una mayor sensibilidad. Los siguientes son ejemplos de sistemas que probamos usando la técnica de sonda de rociado: Hornos de barra A Sistemas de haz de electrones Sistemas láser Equipos de deposición de metal Sistemas de destilación Sistemas de vacío Sonda de rastreo esta técnica, el helio se purga por todo el interior del sistema que se está probando. Debido a las propiedades innatas del helio, migra fácilmente por todo el sistema y, en su intento de escapar, penetra cualquier imperfección, incluidas: soldaduras defectuosas (causadas por grietas, orificios, soldaduras incompletas, porosidad, etc.), juntas defectuosas o faltantes, fugas debido a abrazaderas flojas o cualquier otro defecto. Luego se escanea el exterior del sistema usando una sonda conectada al probador de fugas. Cualquier fuga resultará en un aumento del nivel de helio más cercano a la fuente y se detectará fácilmente. Luego se pueden identificar las fuentes de fuga, lo que brinda la oportunidad de reparar y volver a probar de inmediato. A diferencia de la técnica de sonda de rociado, este proceso es muy flexible y se puede adaptar para satisfacer las necesidades de prácticamente cualquier sistema en el que se pueda inyectar helio. No hay limitación práctica de tamaño. Sin embargo, la técnica de la sonda de rastreo no es tan sensible como el proceso de la sonda de rociado debido a la cantidad de helio presente en el aire (aproximadamente 5 ppm). La máxima sensibilidad alcanzable con este procedimiento es de aproximadamente 1x10-6 std cc/seg. Sin embargo, este proceso es muy superior a otros métodos tradicionales de prueba de fugas, como: prueba de burbujas, emisión acústica, líquido penetrante o prueba de caja de vacío. La siguiente lista es un ejemplo de sistemas que Jurva Leak Testing ha probado usando el proceso de sonda de rastreo: Tanques de almacenamiento (tanto sobre el suelo como bajo tierra) Techos flotantes Tuberías subterráneas Cables subterráneos Sistemas asépticos (refrigeradores instantáneos, intercambiadores de calor, rellenos, etc.) Cualquier recipiente/línea o sistema que se pueda presurizar

Condición: Nuevo



Número de parte: P108340



Precio: $2,079,806.76CLP



Divisa: Chilean Peso (CLP)

Bomba turbo de repuesto Pfeiffer Adixen ATH 184 para detectores de fugas de helio ASM 380. PN: SABC0261.
Agotado


Bomba turbo de repuesto Pfeiffer Adixen ATH 184 para detectores de fugas de helio ASM 380. Número de pieza de Pfeiffer: SABC0261. Esta bomba turbo de reemplazo, modelo ATH 184, está especialmente diseñada únicamente para la serie Pfeiffer Adixen ASM380 de detectores de fugas de helio y está equipada con un puerto de purga de válvula solenoide. El detector de fugas móvil de alto rendimiento ASM 380 de Pfeiffer proporciona un alto rendimiento, fiabilidad y fácil manejo. El ASM 380 es un detector de fugas móvil optimizado para bombeo rápido y tiempos de respuesta cortos en objetos de prueba grandes. Combina una bomba de respaldo seco ACP 40, con una capacidad de respaldo de 35 m3/h, con una potente bomba turbomolecular de alto vacío ATH184 en un diseño delgado que se puede usar en modos de prueba de vacío o olfateo. El ASM380 tiene una tasa de fuga mínima detectable para helio de 5 x 10-8 en modo de rastreo y 5 x 10-13 en modo de vacío. El ASM 380 tiene un panel de visualización a color con visualización de 360°: es desmontable y se puede colocar para comodidad del usuario y facilidad de uso con clips magnéticos. Esta unidad móvil de detección de fugas de helio es ideal para aplicaciones que exigen la máxima sensibilidad de prueba. Detector de fugas móvil de alto rendimiento ASM 380 de Pfeiffer Características Rendimiento, sensibilidad y movilidad Alta capacidad de desbaste utilizando una bomba ACP limpia y libre de partículas Compatible con salas limpias Compacto, tamaño pequeño Pantalla táctil a color con visualización de 360° Tasa de fuga mínima detectable 1 x 10-8 pulg. modo Tasa de fuga mínima detectable 5 x 10-13 en modo de vacío Diseño resistente, puede manejar entornos severos Operación fácil Compatible con el control remoto inalámbrico RC 500 WL Gama de interfaces de E/S Menús intuitivos Tarjeta de memoria SD integrada para almacenar datos de prueba Pfeiffer ASM 380 High Rendimiento Detector de fugas móvil Aplicaciones Industria de semiconductores Recubrimiento de área grande Industria solar Aceleradores Componentes de vacío: pasamuros, válvulas, fuelles, juntas de expansión Tecnología láser Suministro de medios ultrapuros Electrónica Aeronáutica Tecnología médica Pruebas de fugas de helio Conceptos básicosLa espectrometría de masas con helio, o prueba de fugas de helio, es un medios precisos de detección de fugas. Esta tecnología se desarrolló por primera vez para el Proyecto Manhattan durante la Segunda Guerra Mundial para localizar fugas extremadamente pequeñas en el proceso de difusión de gas. En el corazón de las pruebas de fugas de helio se encuentra un equipo complejo llamado espectrómetro de masas de helio. Sencillamente, esta máquina se utiliza para analizar muestras de aire (que se introducen en la máquina a través de bombas de vacío) y proporciona una medida cuantitativa de la cantidad de helio presente en la muestra. En la práctica, una fuga se identifica por un aumento en el nivel de helio analizado por la máquina. Las pruebas de fugas de helio pueden identificar fugas extremadamente pequeñas. Por ejemplo, nuestro equipo puede detectar una fuga tan pequeña que emitiría solo dos centímetros cúbicos de helio (o la cantidad equivalente a dos terrones de azúcar) en 320 años. Si bien muy pocas aplicaciones requieren este nivel de precisión, este ejemplo sirve para resaltar la precisión posible con este proceso. Si bien la detección de fugas de helio puede parecer un procedimiento simple, el proceso implica una combinación de arte y ciencia. El usuario debe asegurarse de que el equipo funcione correctamente y el proceso depende en gran medida de la experiencia del usuario. Considere esta analogía: si bien cualquier persona con suficiente dinero puede comprar un avión, aprender a volar requiere mucha práctica. Lo mismo ocurre con la detección de fugas de helio: asegúrese de que su piloto sepa volar. ¿Por qué es superior el helio? Si bien se utilizan muchos gases en la detección de fugas, las cualidades del helio brindan pruebas superiores. Con una AMU (Unidad de masa atómica) de solo 4, el helio es el gas inerte más liviano. Solo el hidrógeno, con una AMU de 2, es más ligero que el helio. Sin embargo, debido al potencial explosivo del hidrógeno, rara vez se usa. Razones adicionales por las que el helio es un gas trazador superior: Presente solo moderadamente en la atmósfera (aproximadamente 5 partes por millón) Fluye a través de grietas 2.7 veces más rápido que el aire No tóxico No destructivo No explosivo Económico Fácil de usar debido Debido a estos atributos y su alta sensibilidad, la prueba de fugas con helio ha ganado una amplia aceptación en una amplia gama de aplicaciones de prueba de fugas. Los dos modos de prueba principales de Helium Leak Testing, si bien hay una variedad de procedimientos de prueba, en general hay: Dos métodos principales de prueba de fugas de helio: Sonda de pulverización Sonda rastreadora La elección entre estos dos modos se basa en el tamaño del sistema que se está probando , así como el nivel de sensibilidad requerido. Sonda de rociado: proporciona la máxima sensibilidad Para esta técnica, el detector de fugas se conecta directamente al sistema bajo prueba y se evacua el interior del sistema. Una vez que se logra un vacío aceptable, se rocía helio discretamente en el exterior del sistema, prestando especial atención a cualquier ubicación sospechosa. Cualquier fuga en el sistema, incluidas soldaduras defectuosas (causadas por grietas, perforaciones, soldaduras incompletas, porosidad, etc.), juntas defectuosas o faltantes, fugas debidas a abrazaderas flojas o cualquier otro defecto permitirán que el helio pase y se detecte fácilmente. por la máquina La fuente de cualquier fuga se puede identificar y reparar con precisión. El proceso de sonda de rociado se utiliza para lograr el más alto nivel de sensibilidad. El equipo que se utiliza dicta la sensibilidad máxima alcanzable; en el caso de Jurva Leak Testing es 2x10-10 std cc/seg. Esta técnica requiere que el sistema que se está probando sea relativamente hermético antes de la prueba, ya que se requiere un amplio vacío para la prueba. Sin embargo, mediante el uso de dispositivos especiales de estrangulamiento, normalmente se puede realizar una prueba general. La prueba general debe eliminar cualquier fuga importante, lo que permite el uso de una mayor sensibilidad. Los siguientes son ejemplos de sistemas que se prueban usando la técnica de sonda de rociado: Hornos de barra A Sistemas de haz de electrones Sistemas láser Equipos de deposición de metal Sistemas de destilación Sistemas de vacío Sniffer ProbeFor esta técnica, el helio se purga por todo el interior del sistema que se está probando. Debido a las propiedades innatas del helio, migra fácilmente por todo el sistema y, en su intento de escapar, penetra cualquier imperfección, incluidas: soldaduras defectuosas (causadas por grietas, orificios, soldaduras incompletas, porosidad, etc.), juntas defectuosas o faltantes, fugas debido a abrazaderas flojas o cualquier otro defecto. Luego se escanea el exterior del sistema usando una sonda conectada al probador de fugas. Cualquier fuga resultará en un aumento del nivel de helio más cercano a la fuente y se detectará fácilmente. Luego se pueden identificar las fuentes de fuga, lo que brinda la oportunidad de reparar y volver a probar de inmediato. A diferencia de la técnica de sonda de rociado, este proceso es muy flexible y se puede adaptar para satisfacer las necesidades de prácticamente cualquier sistema en el que se pueda inyectar helio. No hay limitación práctica de tamaño. Sin embargo, la técnica de la sonda de rastreo no es tan sensible como el proceso de la sonda de rociado debido a la cantidad de helio presente en el aire (aproximadamente 5 ppm). La máxima sensibilidad alcanzable con este procedimiento es de aproximadamente 1x10-6 std cc/seg. Sin embargo, este proceso es muy superior a otros métodos tradicionales de prueba de fugas, como: prueba de burbujas, emisión acústica, líquido penetrante o prueba de caja de vacío. La siguiente lista son ejemplos de sistemas que Jurva Leak Testing ha probado usando el proceso de sonda de rastreo: Tanques de almacenamiento (tanto sobre el suelo como bajo tierra) Techos flotantes Tuberías subterráneas Cables subterráneos Sistemas asépticos (refrigeradores instantáneos, intercambiadores de calor, rellenos, etc.) Cualquier recipiente/línea o sistema que se pueda presurizar

Condición: Nuevo



Número de parte: P1012234



Precio: $8,758,607.40CLP




Divisa: Chilean Peso (CLP)

Pfeiffer Adixen Wired Remote Control ASM 310, ASM 340, ASM 380 Detector de fugas de helio, en Torr l/s, 108881
Agotado


Pfeiffer Adixen Control remoto con cable ASM 182, 310, ASM 340 y ASM 380 Detector de fugas de helio, en Torr l/sPfeiffer Adixen Número de pieza 108881 Este control remoto con cable estándar Pfeiffer Adixen para detectores de fugas ASM 182, 310, ASM 340 y ASM 380. Lee la tasa de fuga en Torr l/s. Cuando el operador conecta el control remoto al detector de fugas, la unidad detectora de fugas se reprograma automáticamente con la unidad del control remoto. La unidad es memorizada por el detector cuando el operador desconecta el control remoto. Estos mandos a distancia con cable estándar Pfeiffer Standard 108881 y el manual de instrucciones de funcionamiento y el folleto del producto de Pfeiffer Adixen se pueden descargar en formato PDF a continuación. CONTENIDO del control remoto estándar: Control remoto Cable de 5 metros Imanes para adherirse a superficies metálicas Fundamentos de la prueba de fugas con helioLa espectrometría de masas con helio, o prueba de fugas con helio, es un medio muy preciso de detección de fugas. Esta tecnología se desarrolló por primera vez para el Proyecto Manhattan durante la Segunda Guerra Mundial para localizar fugas extremadamente pequeñas en el proceso de difusión de gas. En el corazón de las pruebas de fugas de helio se encuentra un equipo complejo llamado espectrómetro de masas de helio. Sencillamente, esta máquina se utiliza para analizar muestras de aire (que se introducen en la máquina a través de bombas de vacío) y proporciona una medida cuantitativa de la cantidad de helio presente en la muestra. En la práctica, una fuga se identifica por un aumento en el nivel de helio analizado por la máquina. Las pruebas de fugas de helio pueden identificar fugas extremadamente pequeñas. Por ejemplo, nuestro equipo puede detectar una fuga tan pequeña que emitiría solo dos centímetros cúbicos de helio (o la cantidad equivalente a dos terrones de azúcar) en 320 años. Si bien muy pocas aplicaciones requieren este nivel de precisión, este ejemplo sirve para resaltar la precisión posible con este proceso. Si bien la detección de fugas de helio puede parecer un procedimiento simple, el proceso implica una combinación de arte y ciencia. El usuario debe asegurarse de que el equipo funcione correctamente y el proceso depende en gran medida de la experiencia del usuario. Considere esta analogía: si bien cualquier persona con suficiente dinero puede comprar un avión, aprender a volar requiere mucha práctica. Lo mismo ocurre con la detección de fugas de helio: asegúrese de que su piloto sepa volar. ¿Por qué es superior el helio? Si bien se utilizan muchos gases en la detección de fugas, las cualidades del helio brindan pruebas superiores. Con una AMU (Unidad de masa atómica) de solo 4, el helio es el gas inerte más liviano. Solo el hidrógeno, con una AMU de 2, es más ligero que el helio. Sin embargo, debido al potencial explosivo del hidrógeno, rara vez se usa. Razones adicionales por las que el helio es un gas trazador superior: Presente solo moderadamente en la atmósfera (aproximadamente 5 partes por millón) Fluye a través de grietas 2.7 veces más rápido que el aire No tóxico No destructivo No explosivo Económico Fácil de usar debido Debido a estos atributos y su alta sensibilidad, la prueba de fugas con helio ha ganado una amplia aceptación en una amplia gama de aplicaciones de prueba de fugas. Los dos modos de prueba principales de Helium Leak Testing, si bien hay una variedad de procedimientos de prueba, en general hay: Dos métodos principales de prueba de fugas de helio: Sonda de pulverización Sonda rastreadora La elección entre estos dos modos se basa en el tamaño del sistema que se está probando , así como el nivel de sensibilidad requerido. Sonda de rociado: proporciona la máxima sensibilidad Para esta técnica, el detector de fugas se conecta directamente al sistema bajo prueba y se evacua el interior del sistema. Una vez que se logra un vacío aceptable, se rocía helio discretamente en el exterior del sistema, prestando especial atención a cualquier ubicación sospechosa. Cualquier fuga en el sistema, incluidas soldaduras defectuosas (causadas por grietas, perforaciones, soldaduras incompletas, porosidad, etc.), juntas defectuosas o faltantes, fugas debidas a abrazaderas flojas o cualquier otro defecto permitirán que el helio pase y se detecte fácilmente. por la máquina La fuente de cualquier fuga se puede identificar y reparar con precisión. El proceso de sonda de rociado se utiliza para lograr el más alto nivel de sensibilidad. El equipo que se utiliza dicta la sensibilidad máxima alcanzable; en el caso de Jurva Leak Testing es 2x10-10 std cc/seg. Esta técnica requiere que el sistema que se está probando sea relativamente hermético antes de la prueba, ya que se requiere un amplio vacío para la prueba. Sin embargo, mediante el uso de dispositivos especiales de estrangulamiento, normalmente se puede realizar una prueba general. La prueba general debe eliminar cualquier fuga importante, lo que permite el uso de una mayor sensibilidad. Los siguientes son ejemplos de sistemas que probamos usando la técnica de sonda de rociado: Hornos de barra A Sistemas de haz de electrones Sistemas láser Equipos de deposición de metal Sistemas de destilación Sistemas de vacío Sniffer ProbeFor esta técnica, el helio se purga por todo el interior del sistema que se está probando. Debido a las propiedades innatas del helio, migra fácilmente por todo el sistema y, en su intento de escapar, penetra cualquier imperfección, incluidas: soldaduras defectuosas (causadas por grietas, agujeros de alfiler, soldaduras incompletas, porosidad, etc.), juntas defectuosas o faltantes, fugas debido a abrazaderas flojas o cualquier otro defecto. Luego se escanea el exterior del sistema usando una sonda conectada al probador de fugas. Cualquier fuga resultará en un aumento del nivel de helio más cercano a la fuente y se detectará fácilmente. Luego se pueden identificar las fuentes de fuga, lo que brinda la oportunidad de reparar y volver a probar de inmediato. A diferencia de la técnica de sonda de rociado, este proceso es muy flexible y se puede adaptar para satisfacer las necesidades de prácticamente cualquier sistema en el que se pueda inyectar helio. No hay limitación práctica de tamaño. Sin embargo, la técnica de la sonda de rastreo no es tan sensible como el proceso de la sonda de rociado debido a la cantidad de helio presente en el aire (aproximadamente 5 ppm). La máxima sensibilidad alcanzable con este procedimiento es de aproximadamente 1x10-6 std cc/seg. No obstante, este proceso es muy superior a otros métodos tradicionales de prueba de fugas, como: prueba de burbujas, emisión acústica, líquido penetrante o prueba de caja de vacío. La siguiente lista es un ejemplo de sistemas que Jurva Leak Testing ha probado usando el proceso de sonda de rastreo: Tanques de almacenamiento (tanto sobre el suelo como bajo tierra) Techos flotantes Tuberías subterráneas Cables subterráneos Sistemas asépticos (refrigeradores instantáneos, intercambiadores de calor, rellenos, etc.) Cualquier recipiente/línea o sistema que se pueda presurizar

Condición: Nuevo



Número de parte: P105943



Precio: $2,068,088.45CLP


Precio regular: $2,176,935.21CLP




Divisa: Chilean Peso (CLP)

Pfeiffer Adixen RC 10 Control remoto inalámbrico para detector de fugas ASM 310, 340 y 390, 124193 PT 445 432-T
Disponible
1


Pfeiffer Adixen RC 10 Control remoto inalámbrico para detectores de fugas de helio de las series ASM 310, ASM 340 y ASM 390 Pfeiffer Adixen Número de pieza 124193, reemplaza a PT 445 432-T Pantalla táctil para una sola operación del control remoto RC 10 (inalámbrico). Alojado en una carcasa robusta cuya forma permite un trabajo ergonómico. Los imanes en la parte inferior de la unidad permiten fijarla a superficies metálicas horizontales o verticales. La versión inalámbrica RC 10 permite la operación remota hasta una distancia de más de 100 m, dependiendo de las condiciones de recepción. La batería recargable integrada permite más de 8 horas de funcionamiento, dependiendo del nivel de la batería. Las tasas de fuga se pueden mostrar en dígitos o en una curva en la pantalla a color. Los valores medidos de hasta varias horas de registro se pueden almacenar en una memoria interna. El intervalo de almacenamiento de datos es ajustable. Los datos se pueden descargar fácilmente a una memoria USB a través de la interfaz USB integrada para guardarlos. Se puede configurar un disparador interno para proporcionar una advertencia si se exceden las tasas de fuga límite. Se muestra una advertencia óptica en la pantalla y una señal de advertencia acústica con tono variable proporcionalmente a la tasa de fuga suena en el altavoz integrado o en los auriculares conectados. Estos Pfeiffer Adixen RC 10 (Número de pieza de Pfeiffer 124193) reemplazan al antiguo control remoto inalámbrico RC 500 WL PT 445 432-T y el manual de instrucciones de funcionamiento y el folleto del producto de Pfeiffer Adixen se pueden descargar en formato PDF a continuación. CONTENIDO del RC 10: Control remoto inalámbrico Imanes para adherirse a superficies metálicas Fundamentos de la prueba de fugas con helioLa espectrometría de masas con helio, o prueba de fugas con helio, es un medio muy preciso de detección de fugas. Esta tecnología se desarrolló por primera vez para el Proyecto Manhattan durante la Segunda Guerra Mundial para localizar fugas extremadamente pequeñas en el proceso de difusión de gas. En el corazón de las pruebas de fugas de helio se encuentra un equipo complejo llamado espectrómetro de masas de helio. Sencillamente, esta máquina se utiliza para analizar muestras de aire (que se introducen en la máquina a través de bombas de vacío) y proporciona una medida cuantitativa de la cantidad de helio presente en la muestra. En la práctica, una fuga se identifica por un aumento en el nivel de helio analizado por la máquina. Las pruebas de fugas de helio pueden identificar fugas extremadamente pequeñas. Por ejemplo, nuestro equipo puede detectar una fuga tan pequeña que emitiría solo dos centímetros cúbicos de helio (o la cantidad equivalente a dos terrones de azúcar) en 320 años. Si bien muy pocas aplicaciones requieren este nivel de precisión, este ejemplo sirve para resaltar la precisión posible con este proceso. Si bien la detección de fugas de helio puede parecer un procedimiento simple, el proceso implica una combinación de arte y ciencia. El usuario debe asegurarse de que el equipo funcione correctamente y el proceso depende en gran medida de la experiencia del usuario. Considere esta analogía: si bien cualquier persona con suficiente dinero puede comprar un avión, aprender a volar requiere mucha práctica. Lo mismo ocurre con la detección de fugas de helio: asegúrese de que su piloto sepa volar. ¿Por qué es superior el helio? Si bien se utilizan muchos gases en la detección de fugas, las cualidades del helio brindan pruebas superiores. Con una AMU (Unidad de masa atómica) de solo 4, el helio es el gas inerte más liviano. Solo el hidrógeno, con una AMU de 2, es más ligero que el helio. Sin embargo, debido al potencial explosivo del hidrógeno, rara vez se usa. Razones adicionales por las que el helio es un gas trazador superior: Presente solo moderadamente en la atmósfera (aproximadamente 5 partes por millón) Fluye a través de grietas 2.7 veces más rápido que el aire No tóxico No destructivo No explosivo Económico Fácil de usar debido Debido a estos atributos y su alta sensibilidad, la prueba de fugas con helio ha ganado una amplia aceptación en una amplia gama de aplicaciones de prueba de fugas. Los dos modos de prueba principales de Helium Leak Testing, si bien hay una variedad de procedimientos de prueba, en general hay: Dos métodos principales de prueba de fugas de helio: Sonda de pulverización Sonda rastreadora La elección entre estos dos modos se basa en el tamaño del sistema que se está probando , así como el nivel de sensibilidad requerido. Sonda de rociado: proporciona la máxima sensibilidad Para esta técnica, el detector de fugas se conecta directamente al sistema bajo prueba y se evacua el interior del sistema. Una vez que se logra un vacío aceptable, se rocía helio discretamente en el exterior del sistema, prestando especial atención a cualquier ubicación sospechosa. Cualquier fuga en el sistema, incluidas soldaduras defectuosas (causadas por grietas, perforaciones, soldaduras incompletas, porosidad, etc.), juntas defectuosas o faltantes, fugas debidas a abrazaderas flojas o cualquier otro defecto permitirán que el helio pase y se detecte fácilmente. por la máquina La fuente de cualquier fuga se puede identificar y reparar con precisión. El proceso de sonda de rociado se utiliza para lograr el más alto nivel de sensibilidad. El equipo que se utiliza dicta la sensibilidad máxima alcanzable; en el caso de Jurva Leak Testing es 2x10-10 std cc/seg. Esta técnica requiere que el sistema que se está probando sea relativamente hermético antes de la prueba, ya que se requiere un amplio vacío para la prueba. Sin embargo, mediante el uso de dispositivos especiales de estrangulamiento, normalmente se puede realizar una prueba general. La prueba general debe eliminar cualquier fuga importante, lo que permite el uso de una mayor sensibilidad. Los siguientes son ejemplos de sistemas que probamos usando la técnica de sonda de rociado: Hornos de barra A Sistemas de haz de electrones Sistemas láser Equipos de deposición de metal Sistemas de destilación Sistemas de vacío Sniffer ProbeFor esta técnica, el helio se purga por todo el interior del sistema que se está probando. Debido a las propiedades innatas del helio, migra fácilmente por todo el sistema y, en su intento de escapar, penetra cualquier imperfección, incluidas: soldaduras defectuosas (causadas por grietas, agujeros de alfiler, soldaduras incompletas, porosidad, etc.), juntas defectuosas o faltantes, fugas debido a abrazaderas flojas o cualquier otro defecto. Luego se escanea el exterior del sistema usando una sonda conectada al probador de fugas. Cualquier fuga resultará en un aumento del nivel de helio más cercano a la fuente y se detectará fácilmente. Luego se pueden identificar las fuentes de fuga, lo que brinda la oportunidad de reparar y volver a probar de inmediato. A diferencia de la técnica de sonda de rociado, este proceso es muy flexible y se puede adaptar para satisfacer las necesidades de prácticamente cualquier sistema en el que se pueda inyectar helio. No hay limitación práctica de tamaño. Sin embargo, la técnica de la sonda de rastreo no es tan sensible como el proceso de la sonda de rociado debido a la cantidad de helio presente en el aire (aproximadamente 5 ppm). La máxima sensibilidad alcanzable con este procedimiento es de aproximadamente 1x10-6 std cc/seg. No obstante, este proceso es muy superior a otros métodos tradicionales de prueba de fugas, como: prueba de burbujas, emisión acústica, líquido penetrante o prueba de caja de vacío. La siguiente lista es un ejemplo de sistemas que Jurva Leak Testing ha probado usando el proceso de sonda de rastreo: Tanques de almacenamiento (tanto sobre el suelo como bajo tierra) Techos flotantes Tuberías subterráneas Cables subterráneos Sistemas asépticos (refrigeradores instantáneos, intercambiadores de calor, rellenos, etc.) Cualquier recipiente/línea o sistema que se pueda presurizar

Condición: Nuevo



Número de parte: P105948



Precio: $5,504,745.56CLP




Divisa: Chilean Peso (CLP)
Marca de agua con el logotipo de Ideal Vacuum
CONTÁCTENOS
Ideal Vacuum Products , LLC
5910 Midway Park Blvd NE
Albuquerque, Nuevo México 87109-5805 USA

Teléfono: (505) 872-0037
Fax: (505) 872-9001
info@idealvac.com